Towards an Intelligent Edge: Wireless Communication Meets Machine Learning

Hai-Liang Zhao
hliangzhao97@gmail.com

October 25, 2018
Outline

1 Introduction
 - Basic info about this paper
 - Edge learning
 - Layered architecture for in-network machine learning
 - Keypoints on Learning-driven communication
Outline

1 Introduction
 - Basic info about this paper
 - Edge learning
 - Layered architecture for in-network machine learning
 - Keypoints on Learning-driven communication

2 Learning-driven Communication
 - Learning-driven multiple access
 - Learning-driven radio resource management
 - Learning-driven signal encoding
 - Edge learning deployment
Outline

1. Introduction
 - Basic info about this paper
 - Edge learning
 - Layered architecture for in-network machine learning
 - Keypoints on Learning-driven communication

2. Learning-driven Communication
 - Learning-driven multiple access
 - Learning-driven radio resource management
 - Learning-driven signal encoding
 - Edge learning deployment

3. Conclusions and Inspiration for Egent
 - Deficiencies of this paper
 - Motivations on Egent
Outline

1 Introduction
- Basic info about this paper
- Edge learning
- Layered architecture for in-network machine learning
- Keypoints on Learning-driven communication

2 Learning-driven Communication
- Learning-driven multiple access
- Learning-driven radio resource management
- Learning-driven signal encoding
- Edge learning deployment

3 Conclusions and Inspiration for Egent
- Deficiencies of this paper
- Motivations on Egent
About the authors

- G. Zhu, D. Liu, Y, Du, C, You and K. Huang are with the Dept. of Electrical and Electronic Engineering at the University of Hong Kong, Hong Kong.
- J. Zhang is with the Dept. of Electronic and Computer Engineering at the Hong Kong University of Science and Technology, Hong Kong.
- This paper was submitted to IEEE journals in 2018.9. (No publish info found.) The preprinted version can be found at Link.
A new research area, called *edge learning*, emerges, which crosses and revolutionizes two disciplines: wireless communication and machine learning.

The key motivation of **pushing learning towards the edge** is to allow rapid access to the enormous real-time data generated by the edge devices for **fast AI-model training**\(^1\), which in turn endows on the devices human-like intelligence to respond to **real-time events**.

\(^1\)Notice that here we are concerned about *training* an AI model at the edge, not just *inferring*!
Critical points for Edge Learning

△ How to fully exploit the distributed data\(^\dagger\) in AI-model training without incurring excessive communication latency\(^\ddagger\)?

Two critical and coupled aspects:

- learning from **distributed** data\(^2\)
- **reducing communication latency** between edge server and devices

\(^2\) Can we design a method to divide training tasks by meta-information to improve the collaboration among edge servers for better organization of data?
Cloud, edge, and devices

The coexistence of cloud, edge and on-device learning paradigms has led to a layered architecture for in-network machine learning.
Layered architecture for in-network machine learning

Unique strengths of the architecture

Different layers process different data processing and storage capabilities, and cater for different types of learning applications with distinct latency and bandwidth requirements.

- achieve the tradeoff between the AI model complexity and the model-training speed
- avoid excessive propagation delay and network congestion because of its proximity to data sources
- higher learning accuracy by aggregating distributed data from many devices
Paradigm shift on communication*

Conventional philosophy in traditional wireless communication

The traditional design objectives of wireless communications, i.e., *communication reliability* and *data-rate maximization*, do not directly match that of edge learning.

A conceptual change

Learning-driven communication

The *coupling* between communication and learning in edge learning systems should be exploited.
Components of Learning-driven Communication

This paradigm includes three key communication aspects.

- *multiple access*, *resource allocation*, *signal encoding*.

Principle of this paradigm for Fast Intelligence Acquisition

Efficiently transmit data or learning-relevant information to speed up and improve AI-model training at edge servers.
Specific research directions

Conventional communication vs. Learning-driven communication is summarized in the following table.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple access</td>
<td>Target</td>
<td>Decoupling messages from users</td>
<td>Computing func. of distributed data</td>
</tr>
<tr>
<td>(Section II)</td>
<td>Case study</td>
<td>OFDMA</td>
<td>Model-update averaging by AirComp</td>
</tr>
<tr>
<td>Resource Allocation</td>
<td>Target</td>
<td>Maximize sum-rate or reliability</td>
<td>Fast intelligence acquisition</td>
</tr>
<tr>
<td>(Section III)</td>
<td>Case study</td>
<td>Reliability-based retransmission</td>
<td>Importance-aware retransmission</td>
</tr>
<tr>
<td>Signal Encoding</td>
<td>Target</td>
<td>Optimal tradeoffs between rate and</td>
<td>Latency minimization while preserving the</td>
</tr>
<tr>
<td>(Section IV)</td>
<td></td>
<td>distortion/reliability</td>
<td>learning accuracy</td>
</tr>
<tr>
<td></td>
<td>Case study</td>
<td>Quantization, adaptive modulation</td>
<td>Grassmann analog encoding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and polar code</td>
<td></td>
</tr>
</tbody>
</table>

Hai-Liang Zhao hliangzhao97@gmail.com
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Outline

1 Introduction
 - Basic info about this paper
 - Edge learning
 - Layered architecture for in-network machine learning
 - Keypoints on Learning-driven communication

2 Learning-driven Communication
 - Learning-driven multiple access
 - Learning-driven radio resource management
 - Learning-driven signal encoding
 - Edge learning deployment

3 Conclusions and Inspiration for Egent
 - Deficiencies of this paper
 - Motivations on Egent
Motivation and principle

Upload the privacy-sensitive and large-in-quantity training data from devices to an edge server for centralized model training will lead to:

- a privacy concern;
- prohibitive cost in communication.

Therefore, we have ⇒

Federated Learning

Federated Learning features distributed learning† at edge devices and model-update aggregation‡ at an edge server.
Schematic diagram for *Federated Learning*

Two phases:

- Aggregate distributed model updates over a multi-access channel and *apply their average* to update the AI-model.
- Broadcast the model under training to allow edge devices to continuously *refine their individual versions* of the model.
How to realize *Learning-driven multi-access*?

Existing multiple access technologies such as *orthogonal frequency-division* (OFDMA) and *code division* (CDMA) are purely *rate-driven* and fail in actual learning task when transmitting millions to billions of paras.

We should exploit the computation of aggregating function (e.g., averaging or finding the maximum) over distributed data!

- the *average* of model updates rather than their individual values is required
- the simultaneously transmitted analog-waves by different devices are automatically *superposed* at the receiver but weighted by the channel coeffs
Over-the-air computation (AirComp)

The AirComp\(^3\) tech can dramatically reduce the multiple access latency by a factor equal to the number of users.

What AirComp can do?

By using analog-linear modulation and pre-channel-compensation at the transmitter, the “interference” caused by concurrent data transmission can be exploited for fast data aggregation.

\(^3\)How AirComp works? In-depth understanding of it will come soon!
Learning-driven multiple access

Case study: Handwritten-digit recognition with MNIST

A shared broadband channel consisting of $N_s = 1000$ orthogonal* sub channels:

- **conventional OFDMA.** 1000 sub channels are evenly allocated to K edge devices. Model average is performed after all local models are reliably received.
- **AirComp.** Every device uses the full bandwidth so as to exploit the “interference” for direct model averaging over the air.
Where to extension?

- **Robust learning with imperfect AirComp.** Pre-equalization of the channel at the transmitting devices is hard to realize, thus the aggregated data is distorted. Can we design a robust algorithm for imperfect AirComp?

- **Asynchronous AirComp.** Strict synchronization between all the participating edge devices is hard to realize.

- **Generalization to other edge-learning architectures.** The AirComp do not have the *generalization ability*. What about more sophisticated computation than simple averaging?

All the listed shortcomings lie in the unmatured technology - AirComp.
Motivation and principle

Existing methods of radio-resource management (RRM) are designed to maximize the efficiency of spectrum utilization by allocating the scarce radio resources, i.e., power, frequency band, and access time.

Some msgs tend to be more valuable than others for training an AI model! Therefore, we can bring in ⇒

Active Learning

Active Learning is to select important samples from a large unlabelled dataset so as to accelerate model training with a labelling budget.

We can utilize uncertainty (such as entropy) to measure the importance of data.
Case study: Importance-aware retransmission

A binary classifier is trained at the edge server based on SVM, with data collected from distributed edge devices.

- **A noisy data channel.** For acquisition of high-dimensional training data.
- **A low-rate reliable channel.** For accurately transmitting small-size labels.

![Diagram of learning-driven radio resource management](image-url)
Case study: Importance-aware retransmission

Problem formulation: *How many retransmissions instances should be allocated for a given data sample?* In every communication round, the edge server need to decide either *selecting a device for quantity* or *requesting a previously scheduled device for retransmission for quality*.

Hai-Liang Zhao hliangzhao97@gmail.com
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Research opportunities

Where to extension?

- **Cache-assisted importance RRM.** We can exploit the storage of edge devices to a higher degree. By local cache, edge devices can pre-select important data before offloading! How to do that?

- **Multi-user RRM for faster intelligence acquisition.** Redundant information across different users will generated naturally in multiple user scenarios. How to efficiently exploit data diversity?

- **Learning-driven RRM in diversified scenarios.** When the offloaded data is not the original data samples but other learning-related contents, the proposed RRM does not work.

The intro of *Active Learning* is very ingenious! :-D
Feature extraction is widely applied in raw data so as to reduce its dimensions as well as improving the learning performance, e.g., PCA, ICA, LDA. However,:

- too aggressive/conservative dimensionality-reduction can both degrade the learning performance;
- choice of a feature space directly affects the performance of the targeted learning task.
Source-and-channel encoding

Source coding samples, quantizes, and compresses the source signal such that it can be represented by a minimum number of bits under a constraint on signal distortion (rate-distortion tradeoff).

Principle of Learning-driven signal encoding

Signal encoding at an edge device should be designed by jointly optimizing feature extraction, source coding, and channel encoding to accelerate edge learning.
An edge learning system based on *fast analog transmission* (FAT), having *Grassmann analog encoding* (GAE) as its key component, is proposed for fast edge classification.
An edge learning system based on *fast analog transmission* (FAT), having *Grassmann analog encoding* (GAE) as its key component, is proposed for fast edge classification.
Research opportunities

Where to extension?

- **Gradient-data encoding.** We urgently need the design of gradient compression technologies to reduce communication overhead and latency.

- **Motion-data encoding.** How to encode a motion dataset for both efficient communication and machine learning? Maybe we can utilize the GAE method?

- **Channel-aware feature-extraction.** How to exploit *the channel characteristics* for efficient feature-extracting?
Foundations of Edge Learning

- The thriving AI chips and software platforms lay the physical foundations for edge learning.
- MEC and the upcoming 5G networks provide a practical and scalable network architecture for edge learning.

 - AI chips.
 - AI Software platforms.
 - MEC and 5G Network Architecture.
Network visualization architecture

Hai-Liang Zhao hliangzhao97@gmail.com
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Outline

1 Introduction
 - Basic info about this paper
 - Edge learning
 - Layered architecture for in-network machine learning
 - Keypoints on Learning-driven communication

2 Learning-driven Communication
 - Learning-driven multiple access
 - Learning-driven radio resource management
 - Learning-driven signal encoding
 - Edge learning deployment

3 Conclusions and Inspiration for Egent
 - Deficiencies of this paper
 - Motivations on Egent

Hai-Liang Zhao hliangzhao97@gmail.com
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Deficiencies of this paper

Deficiencies (I am potty-mouthed :-D)

- **The most severe problem** of this paper lies in that the in-depth studied three aspects are *loosely linked*. The scheme proposed in *learning-driven multi-access* can not be applied in *learning-driven resource allocation*, and so on.

- The case studies listed are just toy programs.

- Too little research has been made on AirComp, which is an important component for *learning-driven multi-access*. Unmatured technology can not be qualified for edge learning.

- No long-term reliable network system is considered.

- ...

Hai-Liang Zhao hliangzhao97@gmail.com
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning
Motivation for designing Egent

Network models compactable for Egent

Knowledge on Communication in this paper greatly enlightens me the design compactable network/communication models, which is a bottomed layer of Egent.

- Noise in training-data transmission maybe is not that important.
- Long-term observations and collected data on user profiles can be utilized for joint resource management and model-training.
- Collaboration between cloud and edge learning can be in-depth studied.
- Mobility management of users not only effects the offloading decisions, but also incurs frequent handovers among edge servers (not service migration).
- ...

Hai-Liang Zhao hliangzhao97@gmail.com
Towards an Intelligent Edge: Wireless Communication Meets Machine Learning