Transformation Techniques in Optimization

Hailiang Zhao
Zhejiang University

February 25, 2024

Outline

Introduction

Transformation Techniques
Multiplication of Binary Variables
Multiplication of Binary and Continuous Variables
Multiplication of Two Continuous Variables
Maximum and Minimum Operators
Absolute Value Function
Floor and Ceiling Functions
Multiple Breakpoint Function

References

Outline

Introduction

Transformation Techniques
Multiplication of Binary Variables
Multiplication of Binary and Continuous Variables
Multiplication of Two Continuous Variables
Maximum and Minimum Operators
Absolute Value Function
Floor and Ceiling Functions
Multiple Breakpoint Function
References

Introduction

Many optimization problems have been formulated in the non-linear programming form. Finding a global optimum for them in acceptable computational time is challenging.

Linear programming (LP) forms of the optimization models are often recommended rather than solving integer or non-linear forms. Two ways to solve the non-linear optimizations

1. Transformations The non-linear equations or functions are replaced by an exact equivalent LP formulation
2. Linear Approximations Find the equivalent of a non-linear function with the least deviation around the point of interest or separate straight-line segments

Transformations

Transformation into the LP model generally requires particular manipulations and substitutions in the original non-linear model along with the implementation of valid inequalities.

After solving the modified problem, the optimal values of the initial decision variables can be easily determined by reversing the transformation.

Linear Approximations

Linear approximation of a function is an approximation (an affine function) that relies on a set of linear segments for calculation purposes. \triangleright Piecewise or first-order methods
Piecewise Example
Divide the curve and using linear interpolations between the points:

Figure 1: Piecewise linear approximation.

Linear Approximations

Taylor's theorem approximates the output of a function $f(x)$ around a given point by providing a k-times differentiable function and a polynomial of degree k, which is known as the k th-order Taylor polynomial.

First-Order Taylor Polynomial Example

An approximation of $f(x)=e^{x}$ at $(0, f(0))$:

Figure 2: First-order Taylor polynomial.

Outline

Transformation Techniques
Multiplication of Binary Variables
Multiplication of Binary and Continuous Variables
Multiplication of Two Continuous Variables
Maximum and Minimum Operators
Absolute Value Function
Floor and Ceiling Functions
Multiple Breakpoint Function

References

Multiplication of Binary Variables

Consider two binary variables $x_{i}(i \in[m])$ and $y_{j}(j \in[n])$. To linearize the term $x_{i} \cdot y_{j}$, we replace it with an additional binary variable:

$$
\begin{equation*}
z_{i j}:=x_{i} \cdot y_{j}, \forall i \in[m], j \in[n] . \tag{1}
\end{equation*}
$$

We also need to add some new constraints:

$$
\begin{align*}
& z_{i j} \leq x_{i}, \forall i, j, \tag{2}\\
& z_{i j} \leq y_{j}, \forall i, j, \tag{3}\\
& z_{i j} \geq x_{i}+y_{j}-1, \forall i, j, \tag{4}\\
& z_{i j} \in\{0,1\}, \forall i, j . \tag{5}
\end{align*}
$$

Multiplication of Binary Variables

It's easy to verify the correctness of the transformation with the following value table:

x	y	$x \cdot y$	Constraints	Imply
0	0	0	$z \leq 0$	$z=0$
		$z \leq 0$		
		$z \geq-1$		
0	1	$z \in\{0,1\}$		
			$z \leq 0$	$z=0$
		$z \leq 1$		
			$z \geq 0$	
1			$z \in\{0,1\}$	
			$z \leq 1$	$z=0$
			$z \leq 0$	
1		$z \in 0$		
		$z \leq 0,1\}$		
			$z \leq 1$	
		$z \geq 1$		

When binary variables have power $\left(x_{i}^{p}\right)$, w.l.o.g., one can omit the power of $p\left(x_{i}:=x_{i}^{p}\right)$ and apply the same technique.

Multiplication of Binary Variables

The extension to products of more than two variables is straightforward. In general, the multiplication of binary variables $x_{i_{k}}^{p}\left(k \in[K], i_{k} \in I_{k} \in\left[m_{k}\right]\right)$ for $K \geq 2$ with different powers p can be linearized by replacing it with a new variable

$$
\begin{equation*}
z_{j}:=\prod_{k=1}^{K} x_{i_{k}}^{p}, \tag{6}
\end{equation*}
$$

where $j=\left(i_{1}, \ldots, i_{K}\right)$. Additional variables:

$$
\begin{align*}
& z_{j} \leq x_{i_{k}}, \forall k, \forall i_{k} \in I_{k}, \forall j \in \cup_{k=1}^{K} I_{k}, \tag{7}\\
& z_{j} \geq \sum_{k=1}^{K} x_{i_{k}}-(K-1), \forall k, \forall i_{k} \in I_{k}, \forall j \in \cup_{k=1}^{K} I_{k}, \tag{8}\\
& z_{j} \in\{0,1\}, \forall j \in \cup_{k=1}^{K} I_{k} . \tag{9}
\end{align*}
$$

Multiplication of Binary and Continuous Variables

Let x_{i} be a binary variable $(i \in[m])$ and y_{j} be a continuous variable for which $0 \leq y_{j} \leq u_{j}$ holds $(j \in[n])$. To linearize the bilinear term $x_{i} \cdot y_{j}$, we replace it with the auxiliary variable $z_{i j}$. Additional variables:

$$
\begin{align*}
& z_{i j} \leq y_{j}, \forall i, j \tag{10}\\
& z_{i j} \leq \mu_{j} \cdot x_{i}, \forall i, j \tag{11}\\
& z_{i j} \geq y_{j}+u_{j} \cdot\left(x_{i}-1\right), \forall i, j \tag{12}\\
& z_{i j} \geq 0, \forall i, j \tag{13}
\end{align*}
$$

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x} \cdot \boldsymbol{y}$	Constraints	Imply
0	$m: 0 \leq m \leq u$	0	$z \leq m$	$z=0$
		$z \leq 0$		
		$z \geq m-u$		
1	$m: 0 \leq m \leq u$	m	$z \geq 0$	$z=m$
		$z \leq m$		
		$z \leq u$		
		$z \geq m$		

Multiplication of Two Continuous Variables

Linearization of multiplication of continuous variables can be complex. Below provides a hint for bounded variables.

We assume that term $x_{1} \cdot x_{2}$ must be converted. First of all, we define two new continuous variables y_{1} and y_{2} as follows:

$$
\begin{align*}
& y_{1}:=\frac{1}{2}\left(x_{1}+x_{2}\right), \tag{14}\\
& y_{2}:=\frac{1}{2}\left(x_{1}-x_{2}\right) . \tag{15}
\end{align*}
$$

Then $x_{1} \cdot x_{2}$ can be replaced with a separate function:

$$
\begin{equation*}
y_{1}^{2}-y_{2}^{2}:=x_{1} \cdot x_{2} . \tag{16}
\end{equation*}
$$

Multiplication of Two Continuous Variables

Note that $y_{1}^{2}-y_{2}^{2}$ can be linearized with piecewise approximation. We can eliminate the non-linear function at the cost of having to approximate the objective.

If $I_{1} \leq x_{1} \leq u_{1}$ and $I_{2} \leq x_{2} \leq u_{2}$, then the lower and upper bounds on y_{1} and y_{2} are:

$$
\begin{align*}
& \frac{1}{2}\left(I_{1}+l_{2}\right) \leq y_{1} \leq \frac{1}{2}\left(u_{1}+u_{2}\right), \tag{17}\\
& \frac{1}{2}\left(I_{1}-u_{2}\right) \leq y_{2} \leq \frac{1}{2}\left(u_{1}-l_{2}\right) . \tag{18}
\end{align*}
$$

Multiplication of Two Continuous Variables

If

- one of the variables is not referenced in any other term except in the products of the above form,
- and the lower bounds I_{2} and I_{2} are non-negative, there is a simpler way.

Suppose x_{1} is not used in any other terms. We can substitute $x_{1} \cdot x_{2}$ with a single variable z with the following additional constraints:

$$
\begin{equation*}
I_{1} \cdot x_{2} \leq z \leq u_{1} \cdot x_{2} . \tag{19}
\end{equation*}
$$

Once the resulting mathematical formulation is solved in terms of z and x_{2}, it is required to calculate $x_{1}=\frac{z}{x_{2}}$ whenever $x_{2}>0 . x_{1}$ is undetermined when $x_{2}=0$ since the extra constraints on z ensure that $I_{1} \leq x_{1} \leq u_{1}$ only when $x_{2}>0$.

Maximum Operators

Assume there is a general non-linear structure in the form of $\max _{i}\left\{x_{i}\right\}$, where $i \in[n]$. It can be transformed into $z:=\max _{i}\left\{x_{i}\right\}$ with the following additional constraints:

$$
\begin{gather*}
z \geq x_{i}, \forall i \tag{20}\\
z \leq x_{i}+m \cdot y_{i}, \forall i \tag{21}\\
\sum_{i} y_{i} \leq n-1 \tag{22}\\
y_{i} \in\{0,1\}, \forall i \tag{23}
\end{gather*}
$$

where m is a sufficiently large number. (21) and (22) are used to ensure that for only one i, z has to be less then or equal to x_{i} (preventing z from being ∞).

Minimum Operators

For the term $\min _{i}\left\{x_{i}\right\},(20)$ and (21) are replaced by:

$$
\begin{gather*}
z \leq x_{i}, \forall i, \tag{24}\\
z \geq x_{i}-m \cdot y_{i}, \forall i . \tag{25}
\end{gather*}
$$

In this case, (25) and (22) are used to ensure that for only one i, z has to be greater then or equal to x_{i}.

Absolute Value Function

Absolute Value in Constraints
For $|f(x)| \leq z$ where $f(x)$ is linear, we can have it replaced by

$$
\begin{align*}
f(x) & \leq z \tag{26}\\
-f(x) & \leq z
\end{align*}
$$

(27)

The same logic can be applied for $|f(x)| \geq z$ and $|f(x)|+g(x) \leq z($ or $\geq)$.

Absolute Value Function

Absolute Value in the Objective Function
If the objective is

$$
\max _{x, y}-|f(x)|+g(y)
$$

or

$$
\min _{x, y}|f(x)|+g(y)
$$

we can substitute $|f(x)|$ by z and add two extra constraints $f(x) \leq z$ and $-f(x) \leq z$.

Absolute Value Function

Minimizing the Sum of Absolute Deviations
The problem is:

$$
\begin{array}{cc}
& \min _{x_{i}, y_{j}} \sum_{i}\left|x_{i}\right| \\
\text { s.t. } & x_{i}+\sum_{j} a_{i j} y_{j}=b_{i}, \forall i \in[m], \\
& x_{i}, y_{j} \in \mathbb{R}, \forall i \in[m], j \in[n] . \tag{30}
\end{array}
$$

(28)

Absolute Value Function

Minimizing the Sum of Absolute Deviations (Cont'd)

To linearize it, we replace x_{i} with $x_{i}^{+}-x_{i}^{-}$(where the two variables are non-negative). The problem is transformed into:

$$
\begin{array}{ll}
& \min _{x_{i}, y_{j}} \sum_{i}\left|x_{i}^{+}-x_{i}^{-}\right| \\
\text {s.t. } & x_{i}^{+}-x_{i}^{-}+\sum_{j} a_{i j} y_{j}=b_{i}, \forall i \in[m], \\
& x_{i}=x_{i}^{+}-x_{i}^{-}, \forall i \in[m], \\
& x_{i}^{+}, x_{i}^{-} \geq 0, \forall i \in[m], \\
& x_{i}, y_{j} \in \mathbb{R}, \forall i \in[m], j \in[n] . \tag{35}
\end{array}
$$

At the optimal solution, it can be proven that $x_{i}^{+} \cdot x_{i}^{-}=0$. Therefore, the model is reformulated to a linear programming form, as (31) replaced by $\min _{x_{i}, y_{j}} \sum_{i}\left(x_{i}^{+}+x_{i}^{-}\right)$.

Absolute Value Function

Minimizing the Maximum of Absolute Values
The problem is:

$$
\begin{array}{ll}
& \min _{x_{i}, y_{j}} \max _{i}\left|x_{i}\right| \\
\text { s.t. } & x_{i}+\sum_{j} a_{i j} \cdot y_{j}=b_{i}, \forall i \in[m], \\
& x_{i}, y_{j} \in \mathbb{R}, \forall i \in[m], j \in[n] . \tag{38}
\end{array}
$$

x_{i} is the deviation for the i th observation b_{i} and y_{j} is the j th variable in the linear equation.

Absolute Value Function

Minimizing the Maximum of Absolute Values (Cont'd)
We can use x to substitute $\max _{i}\left|x_{i}\right|$, and the problem is re-formulated as:

$$
\begin{gather*}
\min _{x_{i,}, y_{j}} x \tag{39}\\
\text { s.t. } \quad x \geq b_{i}-\sum_{j} a_{i j} y_{j}, \forall i, \tag{40}\\
x \geq-\left(b_{i}-\sum_{j} a_{i j} y_{j}\right), \forall i, \tag{41}\\
x \geq 0, \tag{42}\\
y_{j} \in \mathbb{R}, \forall j .
\end{gather*}
$$

(43)

Floor and Ceiling Functions

For $\lfloor f(x)\rfloor$, we can replace it by y and adding the following constraints:

$$
\begin{gather*}
y \leq f(x)<y+1 \tag{44}\\
y \in \mathbb{Z} \tag{45}
\end{gather*}
$$

For $\lceil f(x)\rceil$, we can replace it by y and adding the following constraints:

$$
\begin{gather*}
y-1<f(x) \leq y \tag{46}\\
y \in \mathbb{Z} \tag{47}
\end{gather*}
$$

Multiple Breakpoint Function

Suppose there is a general continuous multiple breakpoint function that can be defined as follows:

$$
f(x)= \begin{cases}a_{1} x+b_{1} & c_{0} \leq x \leq c_{1} \tag{48}\\ a_{2} x+b_{2} & c_{1} \leq x \leq c_{2} \\ \vdots & \vdots \\ a_{n} x+b_{n} & c_{n-1} \leq x \leq c_{n}\end{cases}
$$

Tasi's Method
Firstly, we can simplify the formulation into the following one:

$$
\begin{align*}
& f(x)=\sum_{i} t_{i} \cdot\left(a_{i} x+b_{i}\right) \tag{49}\\
& \text { s.t. } \quad \sum_{i} c_{i-1} t_{i} \leq x \leq \sum_{i} c_{i} t_{i} \tag{50}\\
& \sum_{i} t_{i}=1 \text { and } t_{i} \in\{0,1\} \tag{51}
\end{align*}
$$

Multiple Breakpoint Function

Tasi's Method (Cont'd)
We define $g_{i}(x)=a_{i} x+b_{i}$. Then, we replace $t_{i} g_{i}(x)$ with z_{i}, the problem is then transformed into:

$$
\begin{gather*}
f(x)=\sum_{i} z_{i} \tag{52}\\
\text { s.t. } \quad \sum_{i} c_{i-1} t_{i} \leq x \leq \sum_{i} c_{i} t_{i}, \tag{53}\\
\sum_{i} t_{i}=1 \text { and } t_{i} \in\{0,1\}, \forall i, \tag{54}\\
g_{i}(x)-\left(1-t_{i}\right) m \leq z_{i}, \forall i, \tag{55}\\
g_{i}(x)+\left(1-t_{i}\right) m \geq z_{i}, \forall i, \tag{56}\\
-t_{i} m \leq z_{i} \leq t_{i} m, \forall i, \tag{57}\\
z_{i} \in \mathbb{R},
\end{gather*}
$$

(58)
where m is a sufficiently large number.

Multiple Breakpoint Function

Mirzapour's Method
$f(x)$ can also be linearized by introducing some binary variables t_{i} and also converting variable x to n independent variables x_{i}, where $x=\sum_{i} x_{i}$.

The problem is then transformed into:

$$
\begin{gather*}
f(x)=\sum_{i} t_{i}\left(a_{i} x_{i}+b_{i}\right) \tag{59}\\
\text { s.t. } \quad c_{i-1} t_{i} \leq x_{i} \leq c_{i} t_{i}, \forall i \tag{60}\\
\sum_{i} t_{i}=1 \text { and } t_{i} \in\{0,1\}, \forall i, \tag{61}\\
x_{i} \in \mathbb{R}, \forall i \tag{62}
\end{gather*}
$$

Multiple Breakpoint Function

Mirzapour's Method (Cont'd)
If $f(x)$ is dis-continuous:

$$
f(x)= \begin{cases}a_{x}+b_{1} & x \leq c_{1}, \tag{63}\\ a_{2} x+b_{2} & c_{1}<x \leq c_{2} \\ \vdots & \vdots \\ a_{n} x+b_{n} & c_{n-1}<x .\end{cases}
$$

We only need to substitute (60) with

$$
\begin{gather*}
\left(c_{i-1}+\frac{1}{m}\right) t_{i} \leq x_{i} \leq c_{i} t_{i}, \forall i \in\{2, \ldots, n-1\}, \tag{64}\\
x_{1} \leq c_{1} t_{1}, \tag{65}\\
\left(c_{n-1}+\frac{1}{m}\right) t_{n} \leq x_{n} . \tag{66}
\end{gather*}
$$

Outline

Introduction

Transformation Techniques

```
Multiplication of Binary Variables
Multiplication of Binary and Continuous Variables
Multiplication of Two Continuous Variables
Maximum and Minimum Operators
Absolute Value Function
Floor and Ceiling Functions
Multiple Breakpoint Function
```

References

References

1. Asghari M, Fathollahi-Fard A M, Mirzapour AI-E-Hashem S M J, et al. Transformation and linearization techniques in optimization: A state-of-the-art survey[J]. Mathematics, 2022, 10(2): 283.
2. Pshenichnyj $B \mathrm{~N}$. The linearization method for constrained optimization[M]. Springer Science \& Business Media, 2012.
