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Introduction

Many optimization problems have been formulated in the
non-linear programming form. Finding a global optimum for
them in acceptable computational time is challenging.

Linear programming (LP) forms of the optimization models are
often recommended rather than solving integer or non-linear
forms. Two ways to solve the non-linear optimizations ——

1. Transformations The non-linear equations or functions are
replaced by an exact equivalent LP formulation

2. Linear Approximations Find the equivalent of a non-linear
function with the least deviation around the point of
interest or separate straight-line segments
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Transformations

Transformation into the LP model generally requires particular
manipulations and substitutions in the original non-linear
model along with the implementation of valid inequalities.

After solving the modified problem, the optimal values of the
initial decision variables can be easily determined by reversing
the transformation.
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Linear Approximations
Linear approximation of a function is an approximation (an
affine function) that relies on a set of linear segments for
calculation purposes. ▷ Piecewise or first-order methods

Piecewise Example

Divide the curve and using linear interpolations between the
points:

Figure 1: Piecewise linear approximation.
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Linear Approximations
Taylor’s theorem approximates the output of a function f (x)
around a given point by providing a k-times differentiable
function and a polynomial of degree k , which is known as the
kth-order Taylor polynomial.

First-Order Taylor Polynomial Example

An approximation of f (x) = ex at (0, f (0)):

Figure 2: First-order Taylor polynomial.
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Multiplication of Binary Variables

Consider two binary variables xi (i ∈ [m]) and yj (j ∈ [n]). To
linearize the term xi · yj , we replace it with an additional binary
variable:

zij := xi · yj ,∀i ∈ [m], j ∈ [n]. (1)

We also need to add some new constraints:

zij ≤ xi ,∀i , j , (2)

zij ≤ yj ,∀i , j , (3)

zij ≥ xi + yj − 1, ∀i , j , (4)

zij ∈ {0, 1},∀i , j . (5)
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Multiplication of Binary Variables
It’s easy to verify the correctness of the transformation with
the following value table:

When binary variables have power (xpi ), w.l.o.g., one can omit
the power of p (xi := xpi ) and apply the same technique.
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Multiplication of Binary Variables

The extension to products of more than two variables is
straightforward. In general, the multiplication of binary
variables xpik (k ∈ [K ], ik ∈ Ik ∈ [mk ]) for K ≥ 2 with different
powers p can be linearized by replacing it with a new variable

zj :=
K∏

k=1

xpik , (6)

where j = (i1, ..., iK ). Additional variables:

zj ≤ xik ,∀k , ∀ik ∈ Ik ,∀j ∈ ∪K
k=1Ik , (7)

zj ≥
K∑

k=1

xik − (K − 1),∀k , ∀ik ∈ Ik ,∀j ∈ ∪K
k=1Ik , (8)

zj ∈ {0, 1},∀j ∈ ∪K
k=1Ik . (9)
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Multiplication of Binary and Continuous Variables
Let xi be a binary variable (i ∈ [m]) and yj be a continuous
variable for which 0 ≤ yj ≤ uj holds (j ∈ [n]). To linearize the
bilinear term xi · yj , we replace it with the auxiliary variable zij .
Additional variables:

zij ≤ yj ,∀i , j , (10)

zij ≤ µj · xi ,∀i , j , (11)

zij ≥ yj + uj · (xi − 1),∀i , j , (12)

zij ≥ 0,∀i , j . (13)
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Multiplication of Two Continuous Variables

Linearization of multiplication of continuous variables can be
complex. Below provides a hint for bounded variables.

We assume that term x1 · x2 must be converted. First of all,
we define two new continuous variables y1 and y2 as follows:

y1 :=
1

2
(x1 + x2), (14)

y2 :=
1

2
(x1 − x2). (15)

Then x1 · x2 can be replaced with a separate function:

y 2
1 − y 2

2 := x1 · x2. (16)
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Multiplication of Two Continuous Variables

Note that y 2
1 − y 2

2 can be linearized with piecewise
approximation. We can eliminate the non-linear function at
the cost of having to approximate the objective.

If l1 ≤ x1 ≤ u1 and l2 ≤ x2 ≤ u2, then the lower and upper
bounds on y1 and y2 are:

1

2
(l1 + l2) ≤ y1 ≤

1

2
(u1 + u2), (17)

1

2
(l1 − u2) ≤ y2 ≤

1

2
(u1 − l2). (18)
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Multiplication of Two Continuous Variables

If

▶ one of the variables is not referenced in any other term
except in the products of the above form,

▶ and the lower bounds l2 and l2 are non-negative,

there is a simpler way.

Suppose x1 is not used in any other terms. We can substitute
x1 · x2 with a single variable z with the following additional
constraints:

l1 · x2 ≤ z ≤ u1 · x2. (19)

Once the resulting mathematical formulation is solved in terms
of z and x2, it is required to calculate x1 =

z
x2

whenever
x2 > 0. x1 is undetermined when x2 = 0 since the extra
constraints on z ensure that l1 ≤ x1 ≤ u1 only when x2 > 0.
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Maximum Operators

Assume there is a general non-linear structure in the form of
maxi{xi}, where i ∈ [n]. It can be transformed into
z := maxi{xi} with the following additional constraints:

z ≥ xi ,∀i , (20)

z ≤ xi +m · yi ,∀i , (21)∑
i yi ≤ n − 1, (22)

yi ∈ {0, 1},∀i , (23)

where m is a sufficiently large number. (21) and (22) are used
to ensure that for only one i , z has to be less then or equal to
xi (preventing z from being ∞).
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Minimum Operators

For the term mini{xi}, (20) and (21) are replaced by:

z ≤ xi ,∀i , (24)

z ≥ xi −m · yi , ∀i . (25)

In this case, (25) and (22) are used to ensure that for only one
i , z has to be greater then or equal to xi .
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Absolute Value Function

Absolute Value in Constraints
For |f (x)| ≤ z where f (x) is linear, we can have it replaced by

f (x) ≤ z , (26)

−f (x) ≤ z . (27)

The same logic can be applied for |f (x)| ≥ z and
|f (x)|+ g(x) ≤ z (or ≥).
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Absolute Value Function

Absolute Value in the Objective Function

If the objective is

max
x ,y

−|f (x)|+ g(y)

or
min
x ,y

|f (x)|+ g(y),

we can substitute |f (x)| by z and add two extra constraints
f (x) ≤ z and −f (x) ≤ z .
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Absolute Value Function

Minimizing the Sum of Absolute Deviations

The problem is:

min
xi ,yj

∑
i

|xi | (28)

s.t. xi +
∑
j

aijyj = bi ,∀i ∈ [m], (29)

xi , yj ∈ R,∀i ∈ [m], j ∈ [n]. (30)
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Absolute Value Function

Minimizing the Sum of Absolute Deviations (Cont’d)

To linearize it, we replace xi with x+i − x−i (where the two
variables are non-negative). The problem is transformed into:

min
xi ,yj

∑
i

|x+i − x−i | (31)

s.t. x+i − x−i +
∑
j

aijyj = bi ,∀i ∈ [m], (32)

xi = x+i − x−i ,∀i ∈ [m], (33)

x+i , x
−
i ≥ 0,∀i ∈ [m], (34)

xi , yj ∈ R,∀i ∈ [m], j ∈ [n]. (35)

At the optimal solution, it can be proven that x+i · x−i = 0.
Therefore, the model is reformulated to a linear programming
form, as (31) replaced by minxi ,yj

∑
i(x

+
i + x−i ).
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Absolute Value Function

Minimizing the Maximum of Absolute Values

The problem is:

min
xi ,yj

max
i

|xi | (36)

s.t. xi +
∑
j

aij · yj = bi ,∀i ∈ [m], (37)

xi , yj ∈ R,∀i ∈ [m], j ∈ [n]. (38)

xi is the deviation for the ith observation bi and yj is the jth
variable in the linear equation.
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Absolute Value Function

Minimizing the Maximum of Absolute Values (Cont’d)

We can use x to substitute maxi |xi |, and the problem is
re-formulated as:

minxi ,yj x (39)

s.t. x ≥ bi −
∑

j aijyj ,∀i , (40)

x ≥ −(bi −
∑

j aijyj),∀i , (41)

x ≥ 0, (42)

yj ∈ R,∀j . (43)
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Floor and Ceiling Functions

For ⌊f (x)⌋, we can replace it by y and adding the following
constraints:

y ≤ f (x) < y + 1, (44)

y ∈ Z. (45)

For ⌈f (x)⌉, we can replace it by y and adding the following
constraints:

y − 1 < f (x) ≤ y , (46)

y ∈ Z. (47)
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Multiple Breakpoint Function
Suppose there is a general continuous multiple breakpoint
function that can be defined as follows:

f (x) =


a1x + b1 c0 ≤ x ≤ c1,
a2x + b2 c1 ≤ x ≤ c2,
...

...
anx + bn cn−1 ≤ x ≤ cn.

(48)

Tasi’s Method
Firstly, we can simplify the formulation into the following one:

f (x) =
∑
i

ti · (aix + bi) (49)

s.t.
∑
i

ci−1ti ≤ x ≤
∑
i

ci ti , (50)∑
i

ti = 1 and ti ∈ {0, 1}. (51)
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Multiple Breakpoint Function

Tasi’s Method (Cont’d)

We define gi(x) = aix + bi . Then, we replace tigi(x) with zi ,
the problem is then transformed into:

f (x) =
∑

i zi (52)

s.t.
∑

i ci−1ti ≤ x ≤
∑

i ci ti , (53)∑
i ti = 1 and ti ∈ {0, 1}, ∀i , (54)

gi(x)− (1− ti)m ≤ zi ,∀i , (55)

gi(x) + (1− ti)m ≥ zi ,∀i , (56)

−tim ≤ zi ≤ tim,∀i , (57)

zi ∈ R, (58)

where m is a sufficiently large number.
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Multiple Breakpoint Function

Mirzapour’s Method

f (x) can also be linearized by introducing some binary
variables ti and also converting variable x to n independent
variables xi , where x =

∑
i xi .

The problem is then transformed into:

f (x) =
∑

i ti(aixi + bi) (59)

s.t. ci−1ti ≤ xi ≤ ci ti ,∀i , (60)∑
i ti = 1 and ti ∈ {0, 1},∀i , (61)

xi ∈ R,∀i . (62)
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Multiple Breakpoint Function

Mirzapour’s Method (Cont’d)

If f (x) is dis-continuous:

f (x) =


ax + b1 x ≤ c1,
a2x + b2 c1 < x ≤ c2,
...

...
anx + bn cn−1 < x .

(63)

We only need to substitute (60) with

(ci−1 +
1
m
)ti ≤ xi ≤ ci ti ,∀i ∈ {2, ..., n − 1}, (64)

x1 ≤ c1t1, (65)

(cn−1 +
1
m
)tn ≤ xn. (66)
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