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Abstract

We study learning-augmented algorithms for the Bahncard problem. In the

Bahncard problem, a traveler needs to irrevocably and repeatedly decide be-

tween a cheap short-term solution and an expensive long-term one with an

unknown future. We develop a new learning-augmented algorithm, named

PFSUM, that incorporates both history and short-term future to improve on-

line decision making. We derive the competitive ratio of PFSUM as a function

of the prediction error as follows:

CRPFSUM(η) =

{ 2γ+(2−β)η
(1+β)γ+βη 0 ≤ η ≤ γ,
(3−β)γ+η
(1+β)γ+βη η > γ.

(1)

We also conduct extensive experiments to show that PFSUM outperforms the

SOTA algorithms.

Notations and Problem Formulation

BP(C, β, T ) with C > 0, T > 0, and 0 ≤ β < 1 is a request-answer game be-

tween an online algorithm ALG and an adversary. The adversary presents a finite

sequence of travel requests σ = σ1σ2 · · · , where each σi is a tuple (ti, pi) that

contains the travel time ti ≥ 0 and the regular ticket price pi ≥ 0.
ALG needs to react to each travel request σi. If ALG does not have a valid Bah-

ncard, it can opt to buy the ticket with the regular price pi, or first purchase a

Bahncard which costs C , and then pay the ticket price with a β-discount, i.e.,
βpi. A Bahncard purchased at time t is valid during the time interval [t, t + T ).
We say σi is a reduced request of ALG if ALG has a valid Bahncard at time ti.

Otherwise, σi is a regular request of ALG. We use ALG(σi) to denote ALG’s cost

on σi:

ALG(σi) =
{

βpi ALG has a valid Bahncard at ti,
pi otherwise.

We denote by ALG(σ) the total cost of ALG for reacting to all the travel requests

in σ. The competitive ratio of ALG is defined by

CRALG := max
σ

ALG(σ)/OPT(σ),

where OPT is an offline optimum for BP(C, β, T ). We use ALG(σ; I) to denote

the partial cost incurred during a time interval I . Additionally, we use c(σ; I) to
denote the total regular cost in I .
Given a time length l, we define the l-recent-cost of σ at time t as c(σ; (t − l, t]).
Similarly, we define the l-future-cost of σ at time t as c(σ; [t, t + l)).
We further define the regular l-recent-cost of ALG on σ at time t as

ALGr
(
σ; (t − l, t]

)
:=

∑
i:σi is a regular request of ALG in (t−l,t]

pi.

Learning-Augmented Algorithms

To represent prediction errors, we use ĉ(σ; [t, t+T )) to denote the predicted total

regular cost in [t, t + T ).
We take the competitive ratio of a learning-augmented online algorithm ALG as

a function CRALG(η) of the prediction error η. ALG is δ-consistent if CRALG(0) = δ,
and ϑ-robust if CRALG(η) ≤ ϑ for all η.

Lemma

For any time t, if c
(
σ; [t, t + T )

)
≥ γ := C/(1 − β), OPT has at least one reduced

request in [t, t + T ). The same holds for the time interval (t, t + T ].

SUM

SUM purchases a Bahncard at a regular request (t, p) whenever its regular T -recent-

cost at time t is at least γ, i.e., SUMr
(
σ; (t−T, t]

)
≥ γ. SUM is the best deterministic

online algorithm, whose competitive ratio is 2 − β.

FSUM

FSUM purchases a Bahncard at a regular request (t, p) whenever the predicted T -

future-cost at time t is at least γ, i.e., ĉ
(
σ; [t, t + T )

)
≥ γ. FSUM is 2/(1 + β)-

consistent, but its robustness is ∞.

PFSUM

FSUM fails to achieve any bounded robustness because it completely ignores

the historical information in the Bahncard purchase condition. Thus, the worst

case is that the actual ticket cost in the prediction window is close to 0, while the
predictor forecasts that it exceeds γ, in which case hardly anything benefits from

the Bahncard purchased.

We also note that SUM achieves a decent competitive ratio because a Bahncard

is purchased only when the regular T -recent-cost is at least γ.

Motivated by this observation, we introduce a new algorithm PFSUM (Past and

Future SUM), in which the Bahncard purchase condition incorporates the ticket

costs in both a past time interval and a future prediction window, but uses them

separately rather than taking their sum. PFSUM purchases a Bahncard at a regular

request (t, p) whenever

1. the T -recent-cost at t is at least γ, i.e., c(σ; (t − T, t]) ≥ γ, and

2. the predicted T -future-cost at t is also at least γ, i.e., ĉ(σ; [t, t + T )) ≥ γ.

Note that PFSUM considers the T -recent-cost, but SUM considers only the reg-

ular T -recent-cost. PFSUM is 2/(1 + β)-consistent and 1/β-robust.

Competitive Analysis for PFSUM

We adopt a divide-and-conquer approach to analyze PFSUM. We focus on the

time intervals in which at least one of PFSUM and OPT has a valid Bahncard, and

analyze the cost ratio between PFSUM and OPT in these intervals.
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Figure 1. All the 6 patterns of concerned time intervals in which either PFSUM or OPT has a

Bahncard. In Patterns III to VI, x is the number of Bahncards purchased by OPT in an on phase

and expiring in the next on phase. x can be any non-negative integers.

We define η as the maximum prediction error among all the predictions:

η := max
(t,p) is a regular request

∣∣ĉ(σ; [t, t + T )
)

− c
(
σ; [t, t + T )

)∣∣ .

The competitive ratio of PFSUM with any prediction errors is shown in (1).

Experimental Results

We model the inter-request time of occasional travelers using an exponential

distribution with a mean of 2 days. The predictions are generated by adding

noise to the original instance.

Figure 2. The cost ratios for commuters (β = 0.8, T = 10, C = 100). “U”, “N” and “P” represent

Uniform, Normal and Pareto ticket price distributions respectively.

PFSUM outperforms all the baselines in both consistency and robustness.
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