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Sequential Decison-Making Problems (SDMP)

Computer systems are full of sequential decision-making tasks
that can naturally be expressed as Markov decision processes (MDP).

Examples
1 Caching (operating systems)
2 Congestion control (networking)
3 �ery optimization (databases)
4 Scheduling (distributed systems)
5 …

Since real-world systems are di�icult to model accurately, state of the
art systems o�en rely on human-engineered heuristics, which are

I complex (e.g., a commercial database query optimizer in-
volves hundreds of rules), and
I di�icult to adapt across di�erent environments.
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SDMP in Networking

Congestion Control
I Hosts determine the rate to send tra�ic, accounting for both
the capacity of the underlying network infrastructure and the
demands of other hosts
I The sender side (agent) sets the sending rate based on how
previous packets were acknowledged

Bitrate Adaptation in Video Streaming
I At watch time, an agent decides the bitrate (a�ecting
resolution) of each video chunk based on the network and video
characteristics
I The goal is to learn a policy that maximizes the resolution
while minimizing chance of stalls
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SDMP in Databases

�ery Optimization
I Modern query optimizers are complex heuristics which use a
combination of rules, handcra�ed cost models, data statistics,
and dynamic programming, with the goal to re-order the
query operators (e.g., joins, predicates) to ultimately lower
the execution time
IWith RL, the goal is to learn a query optimization policy based
on the feedback from optimizing and running a query plan
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SDMP in Distributed Systems

Job Scheduling
I Distributed systems handle computations that are too large to
fit on one computer. A job scheduler decides how the system
should assign compute and memory resources to jobs to
achieve fast completion times
I Jobs can have complex structure
(e.g., Spark jobs are structured as dataflow graphs, Tensorflow
models are computation graphs)
I The agent in this case observes a set of jobs and the status of
the compute resources (e.g., how each job is currently assigned)
I The action decides how to place jobs onto compute resources.
The goal is to complete the jobs as soon as possible
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SDMP in Operating Systems

Caching Optimization
I Operating systems provide caching mechanisms which
multiplex limited memory amongst applications
I The RL agent can observe the information of both the existing
objects in the cache and the incoming object; it then decides
whether to admit the incoming object and which stale objects to
evict from the cache. The goal is to maximize the cache hit rate

CPU Power State Management
I Operating systems control whether the CPU should run at an
increased clock speed and boost application performance, or
save energy with at a lower clock speed
I An RL agent can dynamically control the clock speed based on
the observation of how each application is running. The goal is
to maintain high application performance while reducing the
power consumption
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Why Not Use Reinforcement Learning?

Deep reinforcement learning (RL) has emerged as a general and
powerful approach to sequential decision making problems in games
and simulated robotics tasks. However,

Real-world SYSTEMS of deep RL have far been limited!

Challenges

The problems in systems are vast, ranging from
I centralized control
(e.g. scheduling for entire VM cluster)
to
I distributed multi-agent problem where multiple entities
with partial information collaborate to optimize system
performance (e.g. network congestion control with multiple
connections sharing bo�leneck links)
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Reinforcement Learning for Systems: Challenges

Challenges (cont’d)

The control tasks manifest at a variety of timescales, from
I fast, reactive control systems with sub-second
response-time requirements
(e.g., admission and eviction algorithms for caching objects in
memory)
to
I longer term planning problems that consider a wide range
of signals to make decisions
(e.g., VM allocation and placement in cloud computing)
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Reinforcement Learning for Systems: Challenges

Challenges (cont’d)

Learning algorithms themselves also face new challenges:
I time-varying state or action spaces
(e.g. dynamically varying number of jobs and machines in a
computer cluster)
I structured data sources
(e.g., graphs to represent data flow of jobs or a network’s
topology)
I highly stochastic environments
(e.g., random time-varying workloads)
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Bridge the Gap between RL and Computer Systems
Why only li�le work on RL for computer systems?

1 �e challenges mentioned above
2 Lack of good benchmarks for evaluating solutions
3 Absence of an easy-to-use platform for experimenting with RL

algorithms in systems
Conducting research on learning-based systems requires

I significant expertise to implement solutions in real systems,
I collect suitable real-world traces, and
I evaluate solutions rigorously.

Thus, the authors present the open platform Park =⇒ which
presents a common RL interface to connect to a suite of 12
computer system environments

h�ps://github.com/park-project
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Overview on the Open Platform Park

The 12 representative environments span a wide variety of
problems across networking, databases, and distributed systems,
and range from centralized planning problems to distributed fast
reactive control tasks
In the backend, the environments are powered by both real
systems (in 7 environments) and high fidelity simulators (in 5
environments)
For each environment, Park defines the MDP formulation, e.g.,
events that triggers an MDP step, the state and action
spaces and the reward function. This allows researchers to
focus on the core algorithmic and learning challenges, without
having to deal with low-level system implementation issues
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Overview on the Open Platform Park

Park makes it easy to compare di�erent proposed learning
agents on a common benchmark, similar to how OpenAI Gym
has standardized RL benchmarks for robotics control tasks
Park defines a RPC interface between the RL agent and the
backend system, making it easy to extend to more environments
in the future
The authors benchmark the 12 systems in Park with both RL
methods and existing heuristic baselines. The empirical results
are mixed: RL is able to outperform state-of-the-art baselines in
several environments where researchers have developed
problem-specific learning methods; for many other systems, RL
has yet to consistently achieve robust performance.
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Reinforcement Learning: An Overview
An agent learns to act by interacting with the environment
(observing the state→ generating an action→ obtaining a reward).

Value function estimation
Policy search
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Baisc Symbols and Definitions

MDP and trajectory:
τ = s0, a0, s1, r1, a1, ..., st−1, rt−1, at−1, st, rt, ...

Expected return J : Eτ∼p(τ)[G(τ)] = E
[∑T−1

t=0 γ
trt+1

]
State value function V : V π(s) = Eτ∼p(τ)

[∑T−1
t=0 γ

trt+1|τs0 = s
]

Bellman equation:
V π(s) = Ea∼π(a|s)Es′∼p(s′|s,a)[r(s, a, s′) + γV π(s′)]
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Baisc Symbols and Definitions

State-action value function Q: V π(s) = Ea∼π(a|s)[Qπ(s, a)]
Bellman equation (for Q):

Qπ(s, a) = Es′∼p(s′|s,a)[r(s, a, s′) + γEa′∼π(a′|s′)[Qπ(s′, a′)]
The value functions (Q and V ) are the evaluation on the action
policy π. A larger V (or Q) leads to a be�er policy
For dimensionally increasing state and action spaces, use deep
neural networks to approximate the value functions, which leads
to Deep Q-Networks (DQN)
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Value function-based methods

Model based: Dynamic programming
(1) Policy Iteration: evaluate V , then update π
(2) Value Iteration: update V (thus π) directly
Model free: Monte carlo search
(3) Vanilla version: sampling a trajectory with ε-greedy method
Temporal-Di�erence Learning
I O�-policy (evaluate πε, update π): e.g., (4) Q-learning:

Q̂(s, a)← Q̂(s, a) + α
(
r(s, a, s′) + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

)
I On-policy (evaluate and update πε): e.g., (5) SARSA:

Q̂π(s, a)← Q̂π(s, a) + α
(
r(s, a, s′) + γQ̂π(s′, a′)︸ ︷︷ ︸

reality

− Q̂π(s, a)︸ ︷︷ ︸
estimate

)
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Value function-based methods
(6) Deep Q-Network
I Based on Q-Learning, use a neural network (with param φ) to
approximate the value function Q. The Loss function is the gap
between reality and estimate:

L(s, a, s′|φ) =
(
r(s, a, s′) + γmax

a′
Qφ(s′,a′)︸ ︷︷ ︸

true reward as target

−Qφ(s,a
)2
,

where

Qφ(s) =


Qφ(s, a1)
Qφ(s, a2)

...
Qφ(s, am)

 ≈

Qπ(s, a1)
Qπ(s, a2)

...
Qπ(s, am)


I Other tricks:
(i) freeze target network, and use (ii) experience reply
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Policy Search-based methods
How Policy Search Works

Update the gradients of agent param θ to maximize the expected
return J (θ):

∂J (θ)
∂θ

= Eτ∼pθ(τ)

[
T−1∑
t=0

( ∂
∂θ

log πθ(at|st)γtG(τt:T )
)]
,

where G(τt:T ) =
∑T−1

t′=t γ
t′−trt′+1.

(7) REINFORCE algorithm
Use random walk to sample several trajectories τ (1), ..., τ (n), ....
Then, with each trajectory, update θ by

∂J (θ)
∂θ

=
1
N

N∑
n=1

[
T−1∑
t=0

( ∂
∂θ

log πθ(a
(n)
t |s

(n)
t γtG(τ (n)t:T )

)]
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Policy Search-based methods
(8) REINFORCE with baseline
Take a baseline function b(st) (usually use V πθ(st)) to reduce the
variance of the policy gradients.

∂J (θ)
∂θ

= Eτ∼pθ(τ)

[
T−1∑
t=0

( ∂
∂θ

log πθ(at|st)γt
(
G(τt:T )− Vφ(st)

))]
If we can update the param θ in each step (s, a, r, s′), rather than
a whole trajectory been sampled =⇒

(9) Actor-Critic algorithm
It combines REINFORCE with TD learning to udpate θ
incrementally during each (s, a, r, s′) step. I Actor: the action
policy πθ(s, a) I Critic: the value function Vφ(s)

θ ← θ − αγt
(

Ĝ(τt:T )︸ ︷︷ ︸
true reward: rt+1+γVφ(st+1)

− Vφ(st)︸ ︷︷ ︸
approximation

) ∂
∂θ

log πθ(at|st)
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Conclusion (from the NNDL book)
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RL for Systems: Characteristics and Challenges

The following demonstrates the unique characteristics and
challenges that prevent o�-the-shelf RL methods from achieving
strong performance in di�erent computer system problems.

State-Action Space
Decision Process
Simulation-Reality Gap
Understandability over Existing Heuristics
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State-Action Space

Problem 1: The needle-in-the-haystack problem

The majority of the state-action space presents li�le di�erence in
reward feedback for exploration, which provides no meaningful
gradient during RL training.

The following are several examples:
I Congestion Control

Even in the simple case of a fixed-rate link, se�ing the sending
rate above the available network bandwidth saturates the link
and the network queue. Then, changes in the sending rate above
this threshold result in an equivalently bad throughput and
delay, leading to constant, low rewards
To exit this bad state, the agent must set a low sending rate for
multiple consecutive steps to drain the queue before receiving
any positive reward
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State-Action Space

I Circuit Design
When any of the circuit components falls outside the operating
region (the exact boundary is unknown before invoking the
circuit simulator), the circuit cannot function properly and the
environment returns a constant bad reward

=⇒ SOLUTIONS: Use domain-knowledge to confine the search
space is necessary:

environment-specific reward shaping
bootstrap from existing policies
…
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State-Action Space

Problem 2: Representation of state-action space

When designing RL methods for problems with complex structure,
properly encoding the state-action space is the key challenge.

◦ space grows exponentially large as the problem increases
◦ size of the state/action space is constantly changing over time

=⇒ SOLUTIONS: domain specific representations that capture
inherent structure

Spark jobs, Tensorflow components, and circuit design:
dataflow graphs, use Graph Convolutional Neural Networks
(GCNs)
However, finding the right representation for each problem is a
central challenge
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State-Action Space
=⇒ SOLUTIONS: domain specific representations that capture
inherent structure

Generalizability of GCN and LSTM state representation in the
Tensorflow device placement environment. The numbers are
average runtime in seconds. ± spans one standard deviation.
Bold font indicate the runtime is within 5% of the best runtime.
“Transfer” means testing on unseen models in the dataset

m
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Decision Process

Problem 3: Stochasticity in MDP causing huge variance

�euing systems environments (e.g., job scheduling, load balancing,
cache admission) have dynamics partially dictated by an exogenous,
stochastic input process. Their dynamics are governed by both
◦ the decisions made within the system, and
◦ the arrival process that brings work into the system

The stochasticity causes huge variance in the reward!
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Decision Process

I Huge Variance in Reward
The agents cannot tell whether two reward feedbacks di�er due to
disparate input processes, or due to the quality of the actions.
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Decision Process

=⇒ SOLUTIONS: use input-dependent baseline to e�ectively
reduce the variance from the input process
IWith/Without Input-dependent Baselines
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Decision Process

Problem 4: Infinite horizon problems

Production computer systems (e.g., Spark schedulers, load balancers,
cache controllers, etc.) are long running and host services
indefinitely. This creates an infinite horizon MDP that prevents the
RL agents from performing episodic training.

Leads to:
great di�iculties for bootstrapping a value estimation since there
is no terminal state to easily assign a known target value
the discounted total reward formulation in the episodic case
might not be suitable — an action in a long running system can
have impact beyond a fixed discounting window [e.g.,
scheduling a large job on a slow server blocks future small jobs]
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Simulation-Reality Gap

Problem 5: Simulation-reality gap

Unlike training RL in simulation, robustly deploying a trained RL
agent or directly training RL on an actual running computer systems
has several di�iculties.

(5.1) discrepancies between simulation and reality prevent direct
generalization
(5.2) interactions with some real systems can be slow
(5.3) live training or directly deploying an agent from simulation
can degrade the system performance
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Simulation-Reality Gap

(5.1) Discrepancies between simulation and reality
For example, in [database query optimization], existing simulators or
query planners use o�line cost models to predict query execution
time (as a proxy for the reward). However, the accuracy of the cost
model quickly degrades as the query gets more complex due to both
variance in the underlying data distribution and system-specific
artifacts.

(5.2) Slow interactions with real systems
In adaptive [video streaming], for example, the agent controls the
bitrate for each chunk of a video. Thus, the system returns a reward
to the agent only a�er a video chunk is downloaded, which typically
takes a few seconds. Naively using the same training method from
simulation would take a single-threaded agent more than 10 years to
complete training in reality.

Hailiang ZHAO @ ZJU-CS The RL Platform Park January 5, 2021 34 / 46



Simulation-Reality Gap
(5.3) System performance degrade
For [load balancing], when training with a bimodal distribution job
sizes, the RL agent learns to reserve a certain server for small jobs to
process them quickly. However, when the distribution changes,
blindly reserving a server wastes compute resource and reduces
system throughput.

(a) Distribution of job sizes in the training workload. (b, c) Testing agents on a
particular distribution. An agent trained with distribution 5 is more robust than

one trained with distribution 1.
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Understandability over Existing Heuristics

Problem 6: Understandability over existing heuristics

Heuristics are o�en easy to understand and to debug, whereas a
learned approach is o�en not. Hence, making learning algorithms in
systems as debuggable and interpretable as existing heuristics is a
key challenge.

=⇒ SOLUTIONS: build hybrid solutions, which combine
learning-based techniques with traditional heuristics
(a learned scheduling algorithm could fall back to a simple heuristic
if it detects that the input distributions ignificantly dri�ed)
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Architecture and Implementation Details
Park follows a standard request-response design pa�ern. The backend
system runs continuously and periodically send requests to the
learning agent to take control actions. To connect the systems to
the RL agents, Park defines a common interface and hosts a server
that listens for requests from the backend system. The backend system
and the agent run on di�erent processes (which can also run on
di�erent machines) and they communicate using remote
procedure calls (RPCs). This design essentially structures RL as a
service.
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Architecture and Implementation Details

The computer system connects to an RL agent through a canonical
request/response interface, which hides the system complexity from
the RL agent.

Algorithm 1 describes a cycle of the system interaction with the
RL agent
By wrapping with an “agent-centric” environment in Algorithm
2, Park’s interface also supports OpenAI Gym like interaction for
simulated environments
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Real System Interaction Loop

Each system defines its own events to trigger an MDP step. At
each step, the system sends an RPC request that contains a
current observation of the state and a reward corresponding to
the last action
Upon receiving the request, the Park server invokes the RL
agent. Park provides the agent with all the information provided
by the environment
The implementation of the agent is up to the users (e.g., feature
extraction, training process, inference methods). Once the agent
returns an action, the server replies back to the system
Invoking the agent incurs a physical delay for the RPC response
from the server
I non-blocking RPC: the state observation received by the agent
can be stale
I blocking RPC: taking a long time to compute an action
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Wrapper for simulated interaction

By wrapping the request-response interface with a shim layer,
Park also supports an “agent-centric” style of interaction
advocated by OpenAI Gym
With this interface, we can directly reuse existing o�-the-shelf
RL training implementations benchmarked on Gym
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Other Properties

Scalability
I The common interface allows multiple instances of a system
environment to run concurrently (multiple environment
instances, multiple actor instances, route with RPC request ID)
Environments
I Park implements 12 environments. Seven of the environments
use real systems in the backend. For the remaining five
environments, which have well-understood dynamics, the
authors provide a simulator to facilitate easier setup and faster
RL training
I For these simulated environments, Park uses real-world
traces to ensure that they mimic their respective real-world
environments as faithfully as possible
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Other Properties

Extensibility
I Adding a new system environment in Park is straightforward.
For a new system, it only needs to specify
(1) the state-action space definition (e.g., tensor, graph, powerset,
etc.)
(2) the event to trigger an MDP step, at which it sends an RPC
request
(3) the function to calculate the reward feedback
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Benchmark Experiments
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Benchmark Experiments
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Benchmark Experiments
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