
Online Interval Scheduling

Hailiang Zhao
Zhejiang University

March 5, 2024

A lecture based on the paper —— R. Lipton et al., Online interval

scheduling. In: SODA ’94.

1 / 66

https://dl.acm.org/doi/pdf/10.5555/314464.314506
https://dl.acm.org/doi/pdf/10.5555/314464.314506

Outline

Definition

2-Length Problem Instances
The Virtual Algorithm
Analyzing the VA Algorithm
Lower Bound

Online Marriage Problem

Problem Instances with Arbitrary Length Intervals
The Marriage Algorithm and its Analysis
Lower Bound

Conclusion

2 / 66

Definition

An interval I is a pair of positive real numbers

⟨start(I), len(I)⟩.

We also refer to len(I) as |I|.

For a positive real number r we say r ∈ I if

start(I) ≤ r ≤ start(I) + |I|. (1)

A problem instance (PI) is a finite set S of intervals to be
scheduled. No two intervals in S share a start point.

We say σ ⊂ S is a feasible schedule (FS) if no two intervals of
σ overlap.

3 / 66

Definition

For a FS σ, we define the weight of σ as

|σ| :=
∑
I∈σ

|I|. (2)

Let σ∗ be some maximum weight FS of S. Let F(S) be the
collection of all FSs of S.

A randomized scheduling algorithm (RSA) A takes a PI S and
returns A(S), a FS of S. We treat A(S) as a random variable
over F(S).

The weight of A on S is the expected weight of the FS
returned by A:

W (A, S) = E[W (A(S))]. (3)

4 / 66

Definition

A RSA A is online if for any interval I ∈ S, Pr[I ∈ A(S)]
depends only on intervals with start times before start(I).

We say A is c-competitive if

∀S : c ·W (A, S) ≥ |σ∗|. (4)

Explanation:

1

W (A, S)
/

1

|σ∗|
≤ c ⇔ |σ∗|

W (A, S)
≤ c ⇔ c ·W (A, S) ≥ |σ∗|.

A is strongly c-competitive if A is c-competitive, and there is
no b-competitive algorithm with b < c (the smaller, the
better).

5 / 66

Definition
The weight of A on a particular interval I ∈ S is defined as

WS(A, I) := |I| · Pr[I ∈ A(S)]. (5)

Lemma 1
W (A, S) =

∑
I∈S WS(A, I).

Proof.
The proof is based on the linearity of expectation:
W (A, S) = E[W (A(S))] =

∑
σ∈F(S) |σ| · Pr[A(S) = σ] =∑

I∈S |I| · Pr[I ∈ A(S)] =
∑

I∈S WS(A, I).

text
The weight of A on a subset of S is defined by: If T ⊂ S, then

WS(A, T) :=
∑
I∈T

WS(A, I). (6)

6 / 66

Outline

Definition

2-Length Problem Instances
The Virtual Algorithm
Analyzing the VA Algorithm
Lower Bound

Online Marriage Problem

Problem Instances with Arbitrary Length Intervals
The Marriage Algorithm and its Analysis
Lower Bound

Conclusion

7 / 66

Definition

Let’s consider PIs with only two types of intervals, small
intervals of length 1 and large intervals of length k ≫ 1. We
name this kind of PIs as 2-Length PIs.

Figure 1: A 2-length PI. The intervals are indexed by their start times.

8 / 66

The Virtual Algorithm

It’s easy to see that, to maximize the weight greedily, any time
a k-interval arrives, we should take it whenever possible.

However, upon the arrival of a 1-interval, it’s rational that
sometimes we take it and sometimes we just drop it. We drop
it because we expect that the saved resource can be taken by
a potential k-interval. Thus, we may propose an algorithm like
this:

The Virtual Algorithm (VA)

If the resource is in use, do nothing. Otherwise:

1. For a 1-interval, flip a fair coin. If head, take the interval;
if tail, virtually take the interval, but do no work ——
Take no 1-interval for the next 1 unit of time.

2. For a k-interval, take whenever possible.

9 / 66

Bucket

To establish the connection between VA and σ∗, we introduce
bucket —— A bucket is a set of intervals (or parts of
intervals), and for each J ∈ σ∗, we associate a bucket with it,
referred to as bucket(J). Each interval in σ∗ is assigned to its
own bucket.

For any subinterval I ′, let the interval I containing I ′ be called
Parent(I ′). Then, for any bucket, we define

WS(A, bucket) :=
∑

I′∈bucket

|I ′| · Pr[Parent(I ′) ∈ A(S)]. (7)

In other words, for each bucket, we only count the length of
subintervals that are assigned to it. We say an interval I
blocks another interval J if I overlaps start(J).

10 / 66

Assigning Intervals to Buckets

Lemma 2
For intervals of S can be assigned to buckets such that:

1. no part of any interval is placed in more than one bucket,
and

2. ∀J ∈ σ∗, WS(A, bucket(J)) ≥ |J |
2
,

then A is 2-competitive.

The proof is simple ——

W (A, S) =
∑
I∈S

WS(A, I) by Lemma 1

≥
∑
J∈σ∗

WS(A, bucket(J)) by (7) and condition 1

≥
∑
J∈σ∗

|J |
2

=
|σ∗|
2

. by condition 2 (8)

11 / 66

Analysis Framework

If (i) we can construct a way to assign intervals to buckets
such that the first condition holds, and (ii) we prove that
under this assignment the second condition holds for VA, we
then prove VA is 2-competitive.

First, let’s consider how to assign intervals to buckets.

12 / 66

Assigning Intervals in σ∗

Each interval in σ∗ is assigned to its own bucket.

Then, we address individually the assignments of 1-intervals
I /∈ σ∗ and k-intervals B /∈ σ∗ to buckets.

13 / 66

Assigning 1-Intervals that are not in σ∗

Assigning 1-Intervals

Any 1-interval can block at most one interval of σ∗. Thus, for
each 1-interval of S, place I in the bucket of the interval of σ∗

that it blocks, if any.

Figure 2: σ∗ is shown along the bottom row. The other elements of S are
in the upper rows. All elements of σ∗ are in their own buckets. Each
other element of S has an arrow showing which bucket it is assigned to,
if any.

14 / 66

Assigning k-Intervals that are not in σ∗

We say J ∈ σ∗ is the terminal interval of I ∈ S if J contains
the end point of I. An interval will have at most one terminal
interval because otherwise two intervals in σ∗ would overlap.
Some intervals will not have a terminal interval.

We say a k-interval B covers an interval I if start(I) and
start(I) + |I| are both contained in B.

15 / 66

Assigning k-Intervals that are not in σ∗

Assigning k-Intervals

Say T is the terminal interval of B. We will assign at least
half the length of B to (the bucket of) T . If T does not exist,
the parts of B that would have been assigned to T are not
assigned to any bucket.

If B covers an interval J of σ∗, we do the following: since J
must have length 1, there is a corresponding 1 unit of length
of B which covers J . Assign the first half of this length to J ,
and the second half of it to T . Assign all unassigned
subintervals of B to T .

16 / 66

Assigning k-Intervals that are not in σ∗

Below is an example of assigning a k-interval.

Figure 3: The terminal interval of B is labelled with a T . All subintervals
of B which are not assigned to T are marked with dashed boxes, and
have arrows showing the element of σ∗ to which they are assigned.

Note that there are at most k 1-intervals that can be covered
by B. Even if all the k 1-intervals are in σ∗ (which is actually
impossible if intervals are closed), at most k

2
-length of

subintervals are assigned to them. Thus, there are at least
k
2
-length of subintervals can be assigned to T , if any.

17 / 66

The First Condition of Lemma 2 Holds

It’s easy to see that the first condition of Lemma 2 is obeyed:

▶ 1-intervals can never block more than one interval of σ∗.

▶ Any part of a k-interval that is assigned to a bucket will
be assigned either to the bucket of its terminal interval or
to that of the overlapping interval of σ∗.

18 / 66

What About the Second Condition?

We restate and prove the second condition of Lemma 2.

Lemma 3
For all intervals J ∈ σ∗,

WS(VA, bucket(J)) ≥
|J |
2
. (9)

We can prove this by separately prove the contribution from
the bucket of 1-intervals and the bucket of k-intervals, i.e., to
show that for any 1-interval I ∈ σ∗, WS(VA, bucket(I)) ≥ 1

2
,

and for any k-interval B ∈ σ∗, WS(VA, bucket(B)) ≥ k
2
.

19 / 66

Proof for 1-Intervals

We first consider the buckets associated with 1-intervals of σ∗.

Let I ∈ σ∗ be any 1-interval of σ∗. We then partition F(S)
into four disjoint groups of FSs based on the treatment of I in
the schedule.

20 / 66

The First Group

The first group comprises those FSs with the property that the
resource is available (neither taken or virtually taken)
immediately prior to the start of some 1-interval I ′ that blocks
I —— I ′ is able to be scheduled by VA with probability 1

2
.

Thus, we have

WS(VA, bucket(I)) =
∑

I′∈bucket(I)

|I ′| · Pr[Parent(I ′) ∈ VA(S)]

= |I ′| · Pr[I ′ ∈ VA(S)]

= 1 · 1
2
. (10)

A FS from this group will be scheduled with probability p1 for
some unknown value of p1.

21 / 66

The Second Group

The second group comprises those FSs in which VA schedules
a k-interval B (with probability 1) that covers I. By our
assignment rule, a subinterval of B with a length of 1

2
is

assigned to bucket(I).

Thus, the weight from bucket(I) for any FS in this group is at
least 1

2
.

A FS from this group will be scheduled with probability p2 for
some unknown value of p2.

22 / 66

The Third Group

The third group comprises those FSs in which a k-interval is
scheduled for which I is the terminal interval, i.e., the
k-interval ends in I.

Thus, the weight from bucket(I) for any FS in this group is at
least k

2
, since at least half the length of the k-interval will be

assigned to bucket(I).

A FS from this group will be scheduled with probability p3 for
some unknown value of p3.

23 / 66

The Fourth Group

The fourth group comprises those FSs in which the resource is
neither taken nor virtually taken at the start of I.

Since I is in its own bucket, the weight from bucket(I) for any
FS in this group is at least 1

2
.

A FS from this group will be scheduled with probability
p4 = 1− p1 − p2 − p3.

24 / 66

Proof for 1-Intervals
Thus, the gain of VA on bucket(I) is at least

p1 ·
1

2
+ p2 ·

1

2
+ p3 ·

k

2
+ p4 ·

1

2
≥ 1

2
, (11)

which induces that WS(A, I) ≥ |I|
2
.

(a)

(c)

(b)

(d)

σ∗

σ∗ II

I I

Figure 4: The four cases w.r.t. a 1-interval in σ∗.

25 / 66

Proof for k-Intervals

Assume B ∈ σ∗ is any k-interval. There are three different
groups of F(S) w.r.t. the treatment of B.

26 / 66

The First Group

The first group comprises those FSs in which the resource
schedules a k-interval B′ overlapping B.

Since B is the terminal interval of B′, at least half the length
of B′ is assigned to B. Thus, the weight of VA on bucket(B)
is at least k

2
.

This case occurs with probability p1.

27 / 66

The Second Group

The second group comprises those FSs with the property that
the resource is free immediately preceding the start of some
1-interval I that blocks B.

With probability 1
2
, the 1-interval will be scheduled, and with

probability 1
2
, the 1-interval will be virtually scheduled,

allowing us to schedule a k-interval (either B or another
k-interval in bucket(B)).

The weight of bucket(B) in this case is thus 1
2
· 1 + 1

2
· k
2
≥ k

2
.

This case occurs with probability p2.

28 / 66

The Third Group

The third group comprises those FSs which leave the resource
free (neither taken nor virtually taken) immediately prior to
the start of B, or if B is the terminal interval of some
k-interval B′ ∈ S, immediately prior to the start of B′.

Since all of B and at least half the length of B′ must be
assigned to the bucket of B, the weight of VA on bucket(B)
must be at least k

2
.

This occurs with probability p3 = 1− p1 − p2.

The difference between Case 1 and Case 3 —— In Case 1, the
resource is already taken while in Case 3 the resource is
neither taken nor virtually taken, in which probability involves.

29 / 66

Proof for k-Intervals

Thus, the gain of VA on bucket(B) is at least

p1 ·
k

2
+ p2 ·

k

2
+ p3 ·

k

2
=

k

2
, (12)

which induces that WS(A,B) ≥ |B|
2
.

With the proof for 1-interval and k-intervals, we completes the
proof of Lemma 2.

30 / 66

Lower Bound of the Competitive Ratio

Consider the following 2-length PIs:

Let p1 = Pr[A takes J1] and p2 = Pr[A takes J2]. We denote
by S1 and S2 the set of intervals in Instances 1 and 2,
respectively.

If p1 <
1
2
, W (A, S1) = p1 · 1 < 1

2
= 2 · σ∗(S1), i.e., A is not

even 2-competitive. So we assume p1 ≥ 1
2
. Thus p2 <

1
2
since

J1 and J2 cannot be scheduled simultaneously. Then
2 ·W (A, S2) = 2(p1 + p2 · k) ≈ 2p2k < k = σ∗(S2), which
means A can be no better than 2-competitive on Instance 2.

31 / 66

Outline

Definition

2-Length Problem Instances
The Virtual Algorithm
Analyzing the VA Algorithm
Lower Bound

Online Marriage Problem

Problem Instances with Arbitrary Length Intervals
The Marriage Algorithm and its Analysis
Lower Bound

Conclusion

32 / 66

The Online Marriage Problem

There is a game between a player and a host. The host picks
a number n in advance, which is kept secret from the player.
Each time the host present a number from the sequence
2, 22, ..., 2n to the player. The game is played until

▶ either the player says “yes” (in which the player gets the
money) or

▶ the player refuses n requests (in which case the player
gets nothing).

Formally, we are given a finite geometric sequence [b, b2, ..., bn].
We seek a randomized algorithm A which, when offered $bk,
flips a coin and says “yes” or “no” with probability pk.

33 / 66

The Online Marriage Problem

We define a sequence ci similar to pi as follows:

ci = pi

i−1∏
j=1

(1− pj). (13)

pi is the probability that bi is taken, given that all previous
offers are not taken, while ci is simply the probability that bi is
taken.

We define the gain G of algorithm A as a function of n:

G(A, n) =
n∑

i=1

cib
i. (14)

34 / 66

The (1 + ϵ)-Algorithm

Recall the the zeta function is defined as follows:

ζ(d) =
∞∑
n=1

1

dn
. (15)

For d > 1, ζ(d) converges.

The (1 + ϵ)-Algorithm

The algorithm flips coins such that

ci =
1

i1+ϵζ(1 + ϵ)
. (16)

Obviously,
∑∞

i=1 ci =
1

ζ(1+ϵ)

∑∞
i=1

1
i1+ϵ =

1
ζ(1+ϵ)

· ζ(1 + ϵ) = 1.

Thus, {ci} represents a probability distribution over the bi’s.

35 / 66

The (1 + ϵ)-Algorithm

Note that pi’s can be back-solved from ci and p1, ..., pi−1:

pi =
ci∏i−1

j=1(1− pj)
. (17)

[pi] are used to present an algorithm that actually flips coins.

36 / 66

The (1 + ϵ)-Algorithm

Lemma 4
The (1 + ϵ)-algorithm is O(n1+ϵ)-competitive.

Proof.
If the sequence has length n, OPT = bn. Meanwhile, the
algorithm will take bn offer with probability cn, so will have
gain of at least cnb

n = O(bn

n1+ϵ).

37 / 66

Outline

Definition

2-Length Problem Instances
The Virtual Algorithm
Analyzing the VA Algorithm
Lower Bound

Online Marriage Problem

Problem Instances with Arbitrary Length Intervals
The Marriage Algorithm and its Analysis
Lower Bound

Conclusion

38 / 66

The Marriage Algorithm

We can extend the approach of VA to intervals of arbitrary
lengths —— If we reject an interval I, schedule no other
interval that begins during I unless it’s twice as long as I.

We take the intervals whose length increase exponentially, as
in the Marriage problem.

39 / 66

The Marriage Algorithm

Define the active interval Iactive to be the interval which was
most recently either taken or virtually taken. The depth of
Iactive is some positive integer calculated during the algorithm.

Initially, Iactive is empty. Upon the arrival of a new interval I,
decide as follows.

1. If I starts outside Iactive, set depth to 1. Set Iactive as I
and take I with probability pdepth, o.w. virtually take I.

2. If I starts within Iactive and Iactive is taken, do nothing.

3. If I starts within Iactive, Iactive is virtually taken, and
|I| < 2|Iactive|, do nothing.

4. If I starts within Iactive, Iactive is virtually taken, and
|I| ≥ 2|Iactive|, then set Iactive as I, increment depth, and
take I with probability pdepth, o.w. virtually take I.

The used sequence of probabilities [pi] is defined in (17).

40 / 66

Analyzing The Marriage Algorithm

Theorem 5
MA is O((log∆)1+ϵ)-competitive, where ∆ is the ratio of
longest to shortest intervals in S.

Proving the theorem is our main target.

41 / 66

Simplifying the Instances
To simplify the proof, we assume that all “free space” has
been removed from S, i.e., start times have been modified to
remove any time periods with no pending requests, without
changing lengths, relative start orderings, or overlaps.

J0

J1

J2

J3

J4

(a)

J0

J1

J2

J3

J4

(b)

Figure 5: How we remove the “free space”.

The operation clearly does not change the performance of
algorithms in any way.

42 / 66

Constructing Si

For a set of intervals Si ⊂ S, define |Si| to be the distance
between the start point of the first interval and the end point
of the last-ending interval in Si.

From the beginning of S construct the longest possible set of
overlapping intervals I1, ..., Im with the property that I1 is the
first interval in S and

start(Ij) < start(Ij+1) (18)

and
|Ij+1| ≥ 2|Ij|. (19)

Call this set S1. Note that S1 is the longest possible set
constructed in this way.

43 / 66

Constructing Si

To create S2 after the end of S1, we eliminate “interference”
from S1.

Recall that an interval I is given the opportunity to be
scheduled with some probability unless

1. either the resource is already taken (I is blocked), or

2. the resource is virtually taken by an interval more than
half as long (I is virtually blocked).

44 / 66

Constructing Si

Some intervals will have start points overlapping S1, but will
extend beyond the end of S1. We look for the first interval J
starting outside S1 such that if I overlaps start(J) then either
I begins outside S1 or 2|I| < |J |.

That is, we look for the first interval starting beyond the end
of S1 that could never be virtually blocked by any of these
overlapping intervals.

… … I1

I2

I3
J

S1

Figure 6: J is the chosen interval to be the beginning of S2.

Once we locate J , we use it as the first interval of S2, using
the same construction as for S1. We continue the process until
the end of S.

45 / 66

Analysis Framework

We break S into regions corresponding to the Si’s and analyze
the performance of MA on each region. An interval is placed
in the region of a particular Si if its start point occurs after
the end of all intervals in Si−1 but before the end of the last
interval of Si.

Lemma 6
The weight of MA on the region of Si is at least

clog∆

4
|Si|.

text
This lemma indicates that MA performs well on each Si. In
the following, we present its proof.

46 / 66

Backtracking

Fix i. Let I be the last interval in Si. Let σ be a FS generated
by MA.

Knowing the entire problem instance S allows us to determine
the state of the algorithm at various points of σ. For instance,
consider the start point of I. We can identify this point in σ.
Imagine moving back in time along σ until we reach the
endpoint of some interval in σ. Call this interval L.

Since we know that the resource was free immediately after L,
we know the state of MA, so we can simulate the algorithm
from the endpoint of L onwards.

47 / 66

Backtracking

The interval N ∈ S with the next start point would be
presented to MA. A p1-biased coin would be flipped.1

For the particular run of MA that generated σ, we note that if
N ∈ σ then the coin must have come up heads; o.w. the coin
must have come up tails.

Whichever is the case, we can continue our simulation,
determining the outcome of coin flips by checking to see if the
interval in question appears in σ.

1Here depth = 1 since N starts outside L.

48 / 66

Backtracking

Eventually, we will be presented with the start point of I. At
this point, we end the simulation. We can look back through
the simulation to determine when the resource was last free
(neither taken or virtually taken).

Immeidately after the last free point, MA would have flipped a
p1-biased coin for some interval J , and the resource would
remain either taken or virtually taken until the start of I.

We focus our attention on interval J , which is referred to as
the leading interval of I. For some FSs, I will be its own
leading interval.

49 / 66

Leading Interval

Intuitively, the leading interval of I is the first interval for
which a p1-biased coin was flipped, as we proceed backwards
from the start point of I.

We now break F(S) into groups that share the same leading
interval of I. We call these groups partitions —— all
schedules in a particular partition have the same leading
interval.

50 / 66

Leading Interval

Intuitively, the leading interval of I is the first interval for
which a p1-biased coin was flipped, as we proceed backwards
from the start point of I.

We now break F(S) into groups that share the same leading
interval of I. We call these groups partitions —— all
schedules in a particular partition have the same leading
interval.

Consider a fixed partition P with leading interval J . For
particular schedule σ ∈ P , MA might have flipped heads for J ,
in which case J ∈ σ, or might have flipped tails in which case
J /∈ σ∗. If MA flipped tails, J would have been virtually taken,
and another interval might have had the opportunity to be
scheduled.

51 / 66

From J to I

For any possible outcome of the coin flips, there will be some
schedule in P corresponding to that outcome. Consider the
schedule which results if, when faced with J , MA had actually
flipped tails. And from that point on, MA flipped tails for
every single coin flip it made.

Then one of two cases would occur:

1. MA would flip a coin for interval I.

2. MA, when presented with interval I, would not flip a coin
because it had virtually scheduled some I ′ with length at

least |I′|
2
.

52 / 66

From J to I

If partition P lies in case 1, we would expect a random
schedule from P to contain I with probability at least clog∆.

2

If partition P lies in case 2, we would expect a random
schedule from P to contain I ′ with probability also at least
clog∆.

In both cases, clog∆ is a lower bound on the probability that
MA, when starting at the leading interval of P , flips all tails
until faced with I (or I ′), and then flips heads.

2Note that ci is the probability that bi is taken, which embeds the probabilities that b, ..., bi−1 are not
taken. Since ratio of length |I|/|J| is at most ∆, we need at least log2 ∆ steps to reach I from J (in which the
latter interval is just twice as long as the former one).

53 / 66

Scheduled Length Comparison

Each partition represents all possible outcomes of a particular
online Marriage game —— the “offers” made to the player are
the intervals for which coins would be flipped, beginning with
the leading interval of the partition and continuing through
either I or I ′.

Since 2|I ′| > |I|, we expect to schedule at least clog∆
|I|
2
from

every partition. Intervals I and I ′ are both lie within the
region associated with Si ——

1. this is true for I since I ∈ Si by definition, and

2. for I ′ because I ′ virtually blocks an element of Si, i.e., I,
so could not also overlap an interval in Si−1.

3

Thus, the expected contribution from the region of Si is at
least clog∆

|I|
2
.

3O.w. I cannot be in the next region Si.

54 / 66

Scheduled Length Comparison

Since each interval of Si must be at least twice as long as the
previous one, and each one overlaps the previous one, and I is
the last interval of Si, it must be the case that

|I| ≥ |Si|
2

. (20)

So, in both cases, we expect to acquire at least
clog∆

4
|Si| from

a particular partition.

This is true for all partitions. Since no schedule lies in two
partitions, and the partition cover F(S), we can conclude that
the expected weight of the algorithm on the region of Si must
be at least

clog∆

4
|Si|.

We then complete the proof.

55 / 66

Proving Theorem 5

Now it’s ready to prove Theorem 5.

Note that no interval whose start point lies within Si can be
longer than 2|Si|, or it could be added to Si. So any interval
starting after Si of length at least 4|Si| would satisfy the
conditions to be a valid start interval for Si+1. Thus, the
distance from the end of Si to the beginning of Si+1 cannot
be more than 6|Si|.

Figure 7: The space between Si and Si+1 must be less than 6|Si|.

Thus, we have
∑

i |Si| ≥ 1
7
|S|.

56 / 66

Proving Theorem 5

Recall that we defined the region associated with an Si as the
set of intervals whose start points lie after the end of all
intervals in Si−1 but before the end of the last interval of Si.
Call this region R(Si). We then have

W (MA, S) ≥
∑
i

WS(MA, R(Si))

≥
∑
i

clog∆
4

|Si|

≥ clog∆
4

|S|
7

≥ clog∆
4

|σ∗|
7

. (21)

We then complete the proof of the theorem.

57 / 66

A Lower Bound

Consider the set σn consisting of intervals I0, ..., In and
constructed as follows:

∀k : start(Ik) =
k

n
, and |Ik| = 2k. (22)

All intervals in σn overlap, and they are ordered by length.
The best choice is In.

For any algorithm as n → ∞, we can think of the distribution
{ck} over the positive integers, where

ck = Pr[Algorithm takes Ik].

Note that ∆ in this case is 2n, i.e., n = log∆.

58 / 66

A Lower Bound

Theorem 7
There does not exist an algorithm which is O(n)-competitive
on σn.

Now we present its proof.

Assume ∃k∀n
∑n

i=0 ci2
i ≥ k 2n

n
for some distribution {ci}i.

That is, assume there is an O(n)-competitive algorithm.

We consider the sequence [c1, ..., cn] for some fixed n, and we
take partial sums of 2 log n consecutive ci’s:

(d+1)(2 logn)∑
i=d(2 logn)

ci. (23)

We shall show that any set of ci’s achieving the competitive
bound will not form a valid distribution.

59 / 66

A Lower Bound
First, from the assumption, we have

(d+1)(2 logn)∑
i=0

ci2
i ≥ k

2(d+1)(2 logn)

(d+ 1)(2 log n)

= k
(n2)d+1

(d+ 1)(2 log n)

= (n2)d
kn2

(d+ 1)(2 log n)
(24)

and

d(2 logn)∑
i=0

ci2
i ≤ 2d(2 logn)

d(2 logn)∑
i=0

ci

≤ 2d(2 logn)

= (n2)d. (25)

60 / 66

A Lower Bound
So there exists a k′ < k such that

(d+1)(2 logn)∑
i=d(2 logn)

ci ≥
(n2)d+1

(d+ 1)(2 log n)

(
k − (d+ 1)2 log n

n2

)

=
k′(n2)d+1

(d+ 1)(2 log n)
. (26)

We further have

2(d+1)(2 logn)

(d+1)(2 logn)∑
i=d(2 logn)

ci ≥
k′(n2)d+1

(d+ 1)(2 log n)
, (27)

which leads to

(d+1)(2 logn)∑
i=d(2 logn)

ci ≥
k′

(d+ 1)(2 log n)
. (28)

61 / 66

A Lower Bound
Note that k′ can be chosen to be valid for all n and d beyond
a certain n0. For instance, k

′ = k/2 will have the property.

Summing all these partial series of ci’s over d ranging from 1
to n/(2 log n), we get

n∑
i=2 logn

ci ≥ k′
(

1

4 log n
+

1

6 log n
+ · · ·+ 1

n

)
=

k′

2 log n

(
1

1
+

1

2
+ · · ·+ 2 log n

n
− 1

)

=
k′

2 log n

n/(2 logn)∑
i=1

1

i
− 1

 (29)

When n → ∞, the sum
∑n

x=1
1
x
(the harmonic series) diverges

to infinity, while log2 n also grows to infinity but at a much
slower rate.

62 / 66

A Lower Bound

Thus, we further have

RHS of 29 ≥ k′

2 log n

(
log(

n

2 log n
)− 1

)
=

k′

2 log n

(
log n− log log n2 − 1

)
= k′

(
1

2
− log log n2 + 1

2 log n

)
≥ k′

4
. (30)

The last equation is because log logn2+1
2 logn

→ 0. It indicates that

we have a lower bound for
∑n

i=2 logn ci.

63 / 66

A Lower Bound

We can then perform thje substitution n → log n, which
wouold yield

∑logn
i=2 log logn ci ≥ k′/4. Note that the ci’s from

this new sum are disjoint from those of the previous sum. We
can continue this process of taking logarithms until we reach a
constant:

n∑
i=1

ci ≥
k′

4
log∗ n. (31)

For any value of k′, we can choose n large enough that
log∗ n > 4/k′, yielding

∑
i ci > 1. This contradicts that {ci}i

is a distribution.

We then have the lower bound proved.

64 / 66

Outline

Definition

2-Length Problem Instances
The Virtual Algorithm
Analyzing the VA Algorithm
Lower Bound

Online Marriage Problem

Problem Instances with Arbitrary Length Intervals
The Marriage Algorithm and its Analysis
Lower Bound

Conclusion

65 / 66

Conclusion

For the online interval scheduling problem, we show the
following results:

▶ A strongly 2-competitive algorithm for 2-length problem
instances.

▶ An O((log∆)1+ϵ)-competitive algorithm for scheduling
intervals of arbitrary lengths.

▶ An O(log∆) lower bound on the competitive ratio for
scheduling intervals of arbitrary lengths.

66 / 66

	Definition
	2-Length Problem Instances
	The Virtual Algorithm
	Analyzing the VA Algorithm
	Lower Bound

	Online Marriage Problem
	Problem Instances with Arbitrary Length Intervals
	The Marriage Algorithm and its Analysis
	Lower Bound

	Conclusion

