
An Overview of Kubernetes Scheduling

Hailiang ZHAO@ ZJU-CS
h�p://hliangzhao.me

October 13, 2022

The content of the slide is based on the survey Kubernetes Scheduling:
Taxonomy, Ongoing Issues and Challenges and related o�icial documents
(h�ps://kubernetes.io/docs/home/).

http://hliangzhao.me


Outline

I Introduction

II Background and Terminology
II.A Operating System-Level Virtualization
II.B Container Orchestration
II.C Kubernetes Architecture

III Resource Management in Kubernetes
III.A Scheduling in Kubernetes: User specifications
III.B Scheduling in Kubernetes: Internal workflow

IV Taxonomy and Ongoing Issues

V Future Directions and Open Issues



Outline

I Introduction

II Background and Terminology
II.A Operating System-Level Virtualization
II.B Container Orchestration
II.C Kubernetes Architecture

III Resource Management in Kubernetes
III.A Scheduling in Kubernetes: User specifications
III.B Scheduling in Kubernetes: Internal workflow

IV Taxonomy and Ongoing Issues

V Future Directions and Open Issues



What is Cloud-Native?

The Cloud Native Computing Foundation (CNCF) defines
Cloud-Native as a new computing paradigm in which
applications are built based on amicroservice architecture,
packaged as containers, and dynamically scheduled and
managed by an orchestrator.
I Microservices are deployed and managed independently

and communicate with each other over a network
I Containers are the de facto standard for implementing

these microservices



How Container Works

Containers make use of the native isolation capabilities of
modern operating systems with a low overhead in resource
consumption and obtaining great flexibility in their
deployment.
I Di�erent services are packed in separate and

intercommunicating containers
I Container Orchestration is needed to automate the

deployment, management, scaling, interconnection, and
availability of the container-based applications

=⇒ Container as a Service (CaaS): As a service model to
simplify the deployment of containerized applications in the
cloud. It undertakes authentication, logging, security,
monitoring, networking, load balancing, auto-scaling, and
continuous integration/continuous delivery (CI/CD) functions.



Container Orchestration Toolkits

The orchestrators handle a cluster of physical or virtual
machines to host the containerized application. In particular,
the task of assigning physical resources to containers is
performed by the scheduler =⇒ The focus of this slide!

Target of scheduler: improve resource utilization, reduce
energy consumption, satisfy the latency requirements, …

Trending orchestrators:
1. Kubernetes (and K3S, KubeEdge, …)
2. Docker Swarm
3. Mesos
4. YARN
5. …



Outline

I Introduction

II Background and Terminology
II.A Operating System-Level Virtualization
II.B Container Orchestration
II.C Kubernetes Architecture

III Resource Management in Kubernetes
III.A Scheduling in Kubernetes: User specifications
III.B Scheduling in Kubernetes: Internal workflow

IV Taxonomy and Ongoing Issues

V Future Directions and Open Issues



Virtualization and Docker

Virtualization is a technology that enables the creation of
logical services by means of resources running on hardware. A
container is a group of one or more processes that are isolated
from the rest of the system. It comprises an application and
all its library dependencies and configuration files.

Docker, the most famous container manager, leverages kernel
tools such as cgroups, namespaces, chroot, etc., for its
implementation. Docker is a layered container platform that
comprises several so�ware components for developing,
transporting, and running containerized applications. It
consists of Docker Daemon, Containerd, and Docker Registry,
etc.



Virtualization and Docker

Docker is more lightweight compared with VM.

I With Docker, application is sandboxed inside of the
isolation features that a container provides, but still shares
the same kernel as other containers on the same host

I With a VM, everything running inside the VM is
independent of the host operating system, or hypervisor



Container Management on a Node

a) At the lowest level of container technology rest container
runtimes, such as LXC, RunC, CRun, or Kata, that create and
run the container processes.



Container Management on a Node
b) A high-level container runtime manages the lifecycle of
the container. It pull container images from registries, manage
images and hand them over to the lower-level runtimes.

Containerd and CRI-O are typical high-level container runtimes that
implement the Open Container Initiative (OCI), a standard specification for
image formats and runtimes requirements providing container portability.



Container Management on a Node
c) Usually, the container runtimes are wrapped in so�ware
components called container managers or engines that
increase the level of abstraction.

Docker Daemon acts as a container manager with an API that
simplifies the management of the lifecycle of the containers
and communicates with Containerd.



Container Management on a Node
d) kubelet is a component of Kubernetes that communicates
with the high-level container runtimes which implement the
standard Container Runtime Interface (CRI).

It manages the containers by automating the scheduling,
deployment, availability, load balancing, and networking, etc.



What Orchestrators Do

A container orchestrator manages and organizes microservice
architectures at scale, dealing with the automation and
lifecycle management of containers and services in a cluster.
1. End users submit jobs or tasks
2. The orchestrator assigns the jobs and tasks (their

container instances) to the worker nodes
Orchestrators can be classified as on-premise or managed
solutions:
I On-premise: Borg, Kubernetes, Mesos
I Managed solutions: Google Kubernetes Engine (GKE),

Microso� Azure Kubernetes Service (AKS), Amazon
Elastic Kubernetes Service (Amazon EKS), etc.



Components of Orchestrators

The figure shows the most characteristic components of both
on-premise and managed cluster orchestrators.

Container Orchestration

Monitoring

Admission Control

Scheduling

Re-
Scheduling

Resource 
Reservation

Load 
Balancing

Auto
Scaling

Accounting

The scheduling module is responsible for identifying the best
location to complete incoming tasks. Most scheduling
policies map containers based on the state of the system
(resource constraints, node a�inity, data location) as well as
metrics such as power consumption, response time, or
makespan.



Components of Orchestrators

The rescheduler component implements a task relocation
policy that determines a new location for a task. This
relocation can be triggered for preemption reasons or by the
system state to consolidate the load or improve resource
utilization.

Container Orchestration

Monitoring

Admission Control

Scheduling

Re-
Scheduling

Resource 
Reservation

Load 
Balancing

Auto
Scaling

Accounting



Components of Orchestrators

The resource reservation module reserves the cluster
resources following a request-based approach that can be
static or dynamic over time.

Container Orchestration

Monitoring

Admission Control

Scheduling

Re-
Scheduling

Resource 
Reservation

Load 
Balancing

Auto
Scaling

Accounting



Components of Orchestrators

The load balancing module is in charge of distributing
tasks/user requests across container instances based on
criteria such as fairness, cost-energy, or priority. The
default policy for load balancing is round-robin.

Container Orchestration

Monitoring

Admission Control

Scheduling

Re-
Scheduling

Resource 
Reservation

Load 
Balancing

Auto
Scaling

Accounting



Components of Orchestrators

The autoscaling module is in charge of providing horizontal
and vertical scaling depending on the workload demand. In
the horizontal scaling, nodes are added or deleted while in
the vertical autoscaling the node resources associated with a
task are increased or reduced.

Container Orchestration

Monitoring

Admission Control

Scheduling

Re-
Scheduling

Resource 
Reservation

Load 
Balancing

Auto
Scaling

Accounting



Components of Orchestrators

The admission control module limits requests to create, delete,
modify objects or connect to proxy through validating and
mutating.

Container Orchestration

Monitoring

Admission Control

Scheduling

Re-
Scheduling

Resource 
Reservation

Load 
Balancing

Auto
Scaling

Accounting

An admission controller is a piece of code that intercepts
requests to the Kubernetes API server prior to persistence of
the object, but a�er the request is authenticated and
authorized.



Components of Orchestrators

The accounting module monitors the available resource for a
user while the monitoring module keeps track of real-time
resource consumption metrics for each node and collects
metrics related to the health of the resources to support fault
tolerance systems.

Container Orchestration

Monitoring

Admission Control

Scheduling

Re-
Scheduling

Resource 
Reservation

Load 
Balancing

Auto
Scaling

Accounting



Kubernetes Architecture

The ever-growing K8s ecosystem is composed, to name a few,
of complementary tools for
I management deployments (Helm, h�ps://helm.sh/)
I service mesh management (Istio, h�p://istio.io/)
I monitoring (Prometheus, h�ps://prometheus.io,

Grafana, h�ps://grafana.com)
I logging (Kibana, h�ps://www.elastic.co/kibana/)

CNCF Cloud Native Interactive Landscape can be found at
h�ps://landscape.cncf.io/.

Many scheduling proposals interact with some of these tools
to, for example, extract real-time information about the state
of the system or predict the use of a resource.



Kubernetes Architecture
From an architectural point of view, a K8s cluster consists of a
set of nodes (physical or virtual machines) integrated to
function as a single entity.

node n

node 2

Data Plane

node 1
pod

Control Plane

kube-proxy

kubelet

pod

pod

pod

kube-proxy

kubelet

pod

pod
pod

podkube-proxy

kubelet pod

api-server

kube-scheduler

controller
manager

etcd

Using so�ware-defined overlay networks, such as Flannel or
Calico, allows K8s to assign a unique IP address to each pod
and service.



Kubernetes Architecture
I The master node coordinates the cluster

1. etcd is a key-value database used to synchronize the desired
state of the system

2. kube-scheduler places each pod on a worker node
3. API server receives commands and manipulates the data for

K8s objects, which are persistent entities representing the state
of the cluster. The API server exposes a RESTful HTTP API to
describe an object with JSON or YAML. Users can send
commands to the API server by using the cli (kubectl)

4. controller manager monitors etcd and forces the system into
the desired state. Typical controllers are ReplicaSet,
Deployment, Job, DaemonSet, etc. Controllers monitor the
status of K8s objects and perform the actions to ensure their
successful execution. Scheduling will be triggered if necessary

I The worker nodes are in charge of running the pods
1. kubelet is the node agent responsible for the lifecycle of the

deployed pods and monitoring pods and node status
2. kube-proxy reflects services on each node and forwards

streams across a set of backends



Outline

I Introduction

II Background and Terminology
II.A Operating System-Level Virtualization
II.B Container Orchestration
II.C Kubernetes Architecture

III Resource Management in Kubernetes
III.A Scheduling in Kubernetes: User specifications
III.B Scheduling in Kubernetes: Internal workflow

IV Taxonomy and Ongoing Issues

V Future Directions and Open Issues



How K8S Scheduler Works

When defining an application in a cluster, the master node
receives the information via the Kubernetes API and deploys
the application to the worker node it deems appropriate.

In particular, the scheduler component looks for pods that are
in pending state, because they have just been created and do
not yet have a worker node assigned and finds the best
worker node to run the pod.

The placement decision in a worker node is based both on the
scheduling policy and the user specification.



Scheduling in Kubernetes: User specifications

Users can configure a wide range of options to specify the
conditions that the scheduler should satisfy. To this end, user
specifications indicate di�erent types of constraints that play
the role of a control admission. The constraints can be
node-level, namespace-level, or pod-level.
I Node level: a�inity and taint
I Pod level: We can specify how much of each resource a

container needs with requests/limit quota and priority
I Namespace level: LimitRange and Resource�ota



Scheduling in Kubernetes: Internal workflow

The lifecycle of the kube-scheduler works as follows:
I a) The scheduler maintains a queue of pods called

pod�eue that keeps listening to the API Server
I b)When a pod is created, the pod metadata is first

wri�en to etcd through the API Server



Scheduling in Kubernetes: Internal workflow

I c) kube-scheduler, as a controller, follows the watch state,
takes action, and updates the state pa�ern. It watches
the unbound pods from the etcd and each time an
unbound pod is read from the etcd, the pod is added to
the pod�eue



Scheduling in Kubernetes: Internal workflow

I d) The main process continuously extracts pods from the
pod�eue and assigns them to the most suitable nodes
for running those pods



Scheduling in Kubernetes: Internal workflow

I e) The scheduler updates the pod-node binding in the etcd
in order to be notified to the kubelet on the worker nodes



Scheduling in Kubernetes: Internal workflow

I f) The kubelet component running in the selected worker
node, which monitors the object store for assigned pods,
is notified that a new pod is in pending execution and it
executes the pod. Finally, the pod starts running on the
node



Scheduling in Kubernetes: Internal workflow

The logic of the main process iterates over the nodes in a
round-robin fashion and performs per each unbinding pod the
filtering and ranking substeps.
1. Filtering: Node filtering is based on predicates (Boolean

functions that indicate whether a pod fits a worker node)
I PodFitsHostPorts
I PodFitsResources
I PodFitsHost
I CheckNodeCondition
I …

2. Ranking: Assigns a score to the remaining candidates
depending on certain configurations and metrics
I LeastRequestPriority
I BalanceResourceAllocation
I SelectorSpreadPriority
I …



Extending K8S Scheduler

Kubernetes scheduler supports several ways to extend its
functionality.
I a) Clone the code, add new predicates and/or

priorities to the default scheduler and recompile it
I b) Implement an extender process that the default

scheduler invokes as the final step
I The scheduler extender is a configurable webhook that contains

filter and priority endpoints that correspond to the two main
phases of the scheduling cycle (filtering and ranking)

I The state of the entire cluster stored in the cache of the default
scheduler is not shared with the scheduler extender and data
communication is done through serial HTTP communication
with the associated communication costs



Extending K8S Scheduler

I c) Use the scheduling framework, which is o�icially
recommended
I It defines new extension points (queue sort, pre-filter, filter,

score, reserve, etc.) that are integrated as plugins into the
existing scheduler at compile time

I We can write new scheduling functions in the form of plugins,
and implement a custom scheduler process that can run instead
of or alongside the default scheduler



Outline

I Introduction

II Background and Terminology
II.A Operating System-Level Virtualization
II.B Container Orchestration
II.C Kubernetes Architecture

III Resource Management in Kubernetes
III.A Scheduling in Kubernetes: User specifications
III.B Scheduling in Kubernetes: Internal workflow

IV Taxonomy and Ongoing Issues

V Future Directions and Open Issues



Infrastructure Domain

I Physical Layer:
I The K8s scheduler must manage worker nodes with low resource

capacities as well as di�erent processor architectures. These
hardware-constrained nodes impose di�icult limitations on the
scheduling system and the K8s scheduler must assign resources
e�iciently, for example, to prevent SBCs from running out of
memory when an application is running

I Device-aware scheduling is also important (GPUs, TPUs, FPGAs,
etc.)

I Virtual Layer:
I Network-aware scheduling in K8s is particularly important,

especially for the cloud-edge infrastructure (scalability and
geo-distributed environments)

I The default K8s scheduler is not aware of hardware resource
fragmentation and container interference, which leads to poor
isolation of multi-tenant applications



Cluster Domain

I The Component Subdomain comprises design
parameters related to the scheduler architecture and
multi-cluster or federation scheduler, as well as resource
management components closely linked to the scheduler
in K8s
I Centralized scheduler⇒ Schedulers with modular, two-level, or

distributed architectures
I Single K8s cluster⇒ Multi-cluster scheduler (KubeFed)

I The Environment Subdomain refers to the
computational technologies where K8s can be deployed
I Scheduling in edge/fog computing architectures requires fully

dynamic, network-aware, and fault tolerance solutions



Scheduling Domain

I Mathematical models
I Mathematical modeling (ILP)
I Heuristic (FirstFit, FIFO, DRF, etc.)
I Meta-heuristic (GA, PSO, etc.)
I Machine learning (DNNs, RL)
I Gang scheduling (dependency-aware task gang scheduling)

I Metrics
I Infrastructure: resource utilization (computation, storage,

network), failure rate, interference, energy, etc.
I Cluster: location, mobility, stability, reliability, availability, etc.
I Application: response time, completion time, makespan,

resource demand, etc.



Application Domain

I Application Type
I HPC, machine learning, batch, web server, IoT, serverless

applications, etc.
I Application Architecture

I Monolithic
I Distributed inter-dependent tasks (SFCs, DAGs)
I Workflows that have loops

I Workloads
I Workloads of di�erent service types co-locate (low resource

utilization, resource reservation, etc.)



Performance Domain

I Evaluation Tools
I Simulations without standard rules
I Small testbeds with simple benchmark policies

I Performance Metrics
I From resource providers’ perspective: cost (resource utilization,

etc.)
I From end users’ perspective: QoS (JCT, makespan, total

processing time, etc.)



Outline

I Introduction

II Background and Terminology
II.A Operating System-Level Virtualization
II.B Container Orchestration
II.C Kubernetes Architecture

III Resource Management in Kubernetes
III.A Scheduling in Kubernetes: User specifications
III.B Scheduling in Kubernetes: Internal workflow

IV Taxonomy and Ongoing Issues

V Future Directions and Open Issues



Future Directions and Open Issues

I Infrastructure Domain: Resource virtualization and
management of new physical devices (GPUs, TPUs,
FPGAs, etc.)

I Cluster Domain:
I Distributed control plane. The centralized nature of the K8s

orchestration system does not align well with the needs of the
distributed fog/edge computing environments

I Collaboration among clusters. Kubernetes Cluster Federation
(KubeFed, h�ps://github.com/kubernetes-sigs/kubefed) is
working on this

I Scheduling Domain:
I Advance context-aware scheduling algorithm
I Scalability. The scheduling should support resource

management on dynamically scalable hardware architectures



Future Directions and Open Issues

I Application Domain:
I Workflows and microservices. The scheduler should provide

native support to the e�icient scheduling of workflows
I Model workloads. Understanding the characteristics and

pa�erns of workloads running on K8s clusters is a critical task
for improving K8s scheduling

I Performance Domain:
I Comparability and usability. Current scheduling algorithms are

isolated with li�le interaction between them
I No widely accepted simulation tools. The fact that the evaluation

environments are developed in an ad-hoc manner does not allow
for e�icient and e�ective analysis of the diferent algorithms

I Security issues


	I Introduction
	II Background and Terminology
	II.A Operating System-Level Virtualization
	II.B Container Orchestration
	II.C Kubernetes Architecture

	III Resource Management in Kubernetes
	III.A Scheduling in Kubernetes: User specifications
	III.B Scheduling in Kubernetes: Internal workflow

	IV Taxonomy and Ongoing Issues
	V Future Directions and Open Issues

