
Distributed Systems in One Slide

Hailiang ZHAO@ ZJU-CS
h�p://hliangzhao.me

October 21, 2022

The slide summaries the key contents of an interesting online book
Distributed Systems for Fun and Profit, assisted with several related
materials.

http://hliangzhao.me
http://book.mixu.net/distsys/single-page.html


Outline

I Introduction
I.A Distributed Systems at A High Level
I.B Targets and Constraints
I.C Abstractions and Models
I.D Partition and Replicate

II System Models
II.A System Models on Nodes, Links, and Time (Order)
II.B The Consensus Problem
II.CMore About Consistency

III Time and Order
III.A Total Order and Partial Order
III.B Lamport Clocks and Vector Clocks

IV Replication for Strong Consistency

V Replication For Weak Consistency



Outline

I Introduction
I.A Distributed Systems at A High Level
I.B Targets and Constraints
I.C Abstractions and Models
I.D Partition and Replicate

II System Models
II.A System Models on Nodes, Links, and Time (Order)
II.B The Consensus Problem
II.CMore About Consistency

III Time and Order
III.A Total Order and Partial Order
III.B Lamport Clocks and Vector Clocks

IV Replication for Strong Consistency

V Replication For Weak Consistency



Why Distributed Algorithms Important?

Distributed Programming
is the art of solving the same problem that you can solve on a
single computer using multiple computers —— Usually,
because the problem no longer fits on a single computer.
i
Ideally, adding a new machine would increase the
performance and capacity of the system linearly. But of
course this is not possible, because there is some overhead
that arises due to having separate computers (data copy and
partition cost, communication cost, etc.). This is why it’s
worthwhile to study distributed algorithms.



What We Want to Achieve

I Scalability is the ability of a system, network, or process,
to handle a growing amount of work in a capable manner
or its ability to be enlarged to accommodate that growth.
I size scalability, geographic scalability, and administrative

scalability
I Performance is characterized by the amount of useful

work accomplished by a computer system compared to
the time and resources used.
I response time
I latency : the time during which something that has already

happened is concealed from view
I throughput
I resource utilization

I Availability is the proportion of time a system is in a
functioning condition.
I fault tolerance: the ability of a system to behave in a

well-defined manner once faults occur



Constraints on Distributed Systems

Distributed systems are constrained by two physical factors:
1. The number of nodes
2. The distance between nodes

i

Working within those constraints:
I When independent nodes increase,

I the probability of failure increases
I the communication between nodes increases

I When the geographic distance increases, the minimum
latency for communication between distant nodes
increases



Abstractions and Models

A good abstraction makes working with a system easier to
understand, while capturing the factors that are relevant for a
particular purpose. Typical models in distributed systems:
I System model (asynchronous / synchronous)
I Failure model (crash-fail, partitions, Byzantine)
I Consistency model (strong, eventual)



Partition and Replicate

The manner in which a data set is distributed between
multiple nodes is very important.
I Partitioning is dividing the dataset into smaller distinct

independent sets
I Partitioning improves performance by limiting the amount of

data to be examined and by locating related data in the same
partition

I Partitioning improves availability by allowing partitions to fail
independently, increasing the number of nodes that need to fail
before availability is sacrificed



Partition and Replicate

The manner in which a data set is distributed between
multiple nodes is very important.
I Replication is making copies of the same data on

multiple machines
I Replication improves performance by making additional

computing power and bandwidth applicable to a new copy of
the data

I Replication improves availability by creating additional copies
of the data, increasing the number of nodes that need to fail
before availability is sacrificed

I Replication needs to follow a consistency model; Otherwise
problems may appear. Only one consistency model for
replication —— strong consistency —— allows you to program
as-if the underlying data was not replicated



Outline

I Introduction
I.A Distributed Systems at A High Level
I.B Targets and Constraints
I.C Abstractions and Models
I.D Partition and Replicate

II System Models
II.A System Models on Nodes, Links, and Time (Order)
II.B The Consensus Problem
II.CMore About Consistency

III Time and Order
III.A Total Order and Partial Order
III.B Lamport Clocks and Vector Clocks

IV Replication for Strong Consistency

V Replication For Weak Consistency



System Model Overview

System Model
is a set of assumptions about the environment and facilities
on which a distributed system is implemented.
i
Typical assumptions include:
I what capabilities the nodes have and how they may fail
I how communication links operate and how they may fail
I properties of the overall system, such as assumptions

about time and order



System Model on Nodes
Nodes serve as hosts for computation and storage. They have:
I the ability to execute a program
I the ability to store data into volatile memory (which can

be lost upon failure) and into stable state (which can be
read a�er a failure)

I a clock (which may or may not be assumed to be
accurate)

The Crashing-Recovery Failure Model
is a model where nodes can only fail by crashing (stop
executing), and can (possibly) recover a�er crashing at some
later point.

The Byzantine Fault Tolerance Model
is a model where nodes can fail by misbehaving in any
arbitrary way.



System Model on Communication Links

Communication links connect individual nodes to each other,
and allow messages to be sent in either direction.

Network Partition
occurs when the network fails while the nodes themselves
remain operational.
When network partition occurs, messages may be lost or
delayed until the network partition is repaired.

Other rare assumptions: one-direction link, di�erent
communication costs for di�erent link types, etc.



System Model on Time and Order

Timing assumptions arise because node experiences the world
in a unique manner.

Synchronous System Model
Processes execute in lock-step; There is a known upper bound
on message transmission delay; Each process has an accurate
clock.

Asynchronous System Model
No timing assumptions, e.g., processes execute at independent
rates; There is no bound on message transmission delay (A
node cannot judge whether a message sent to it is lost or
delayed); Useful clocks do not exist.
Real-world networks are subject to failures and there are no
hard bounds on message delay.



The Consensus Problem

The Consensus Problem
Several processes must propose their candidate values,
communicate with one another, and agree on a single
consensus value. Formally:
1. Agreement : Every correct process must agree on the same

value.
2. Integrity : Every correct process decides at most one value,

and if it decides some value, then it must have been
proposed by some process.

3. Termination: All processes eventually reach a decision.
4. Validity : If all correct processes propose the same value v,

then all correct processes decide v.



The FLP Impossibility Result

The FLP Impossibility Result
There DOES NOT EXIST a deterministic algorithm for the
consensus problem in an asynchronous system subject to
failures, even if
1. messages can never be lost (all messages are delivered

correctly and exactly once),
2. at most one process may fail, and
3. it can only fail by crashing.



The CAP Theorem

The CAP Theorem
For the follow three properties:
I Consistency : all nodes see the same data at the same time
I Availability : node failures do not prevent survivors from

continuing to operate
I Partition Tolerance: the system continues to operate

despite message loss due to network and/or node failure
only two can satisfied simultaneously.



The CAP Theorem

We can get three di�erent system types: CA, CP, and AP.



The CAP Theorem

We can get three di�erent system types: CA, CP, and AP.
1. CA: Examples include full strict quorum protocols, such

as two-phase commit.
2. CP: Examples include majority quorum protocols in

which minority partitions are unavailable such as Paxos.
3. AP: Examples include protocols using conflict resolution,

such as Dynamo.



The CAP Theorem

I WHY a CA system cannot be partition tolerance?
A CA system does not distinguish between node failures and network
failures, and hence must stop accepting writes everywhere to avoid
introducing divergence (multiple copies). It cannot tell whether a
remote node is down, or whether just the network connection is
down: so the only safe thing is to stop accepting writes.

I WHY a CP system only supports single-copy consistency?
A CP system prevents divergence (e.g. maintains single-copy
consistency) by forcing asymmetric behavior on the two sides of the
partition. It only keeps the majority partition around, and requires
the minority partition to become unavailable (e.g. stop accepting
writes), which retains a degree of availability (the majority partition)
and still ensures single-copy consistency.



The CAP Theorem
What can we learn from the CAP theorm:
I Partition tolerance is an important property for modern

systems and it SHOULD BE supported, since network
partitions become much more likely, e.g., geographically
distributed DCs.

I There is a tension between strong consistency and high
availability during network partitions. This is because one
CANNOT PREVENT divergence between two replicas
that cannot communicate with each other while
continuing to accept writes on both sides of the partition.

I There is a tension between strong consistency and
performance in normal operation.

I If we do not want to give up availability during a network
partition, then we need to explore whether consistency
models OTHER THAN strong consistency are workable
for our purposes.



More About Consistency

Consistency and availability are not really binary choices,
unless you limit yourself to strong consistency. The “C” in
CAP is “strong consistency”, but “consistency” is not a
synonym for “strong consistency”.

A more detailed classification:
1. Strong consistency models (capable of maintaining a

single copy)
1.1 Linearizable consistency
1.2 Sequential consistency

2. Weak consistency models
2.1 Client-centric consistency models
2.2 Causal consistency: strongest model available
2.3 Eventual consistency models



Strong Consistency Models
Strong consistency models allow a programmer to replace a
single server with a cluster of distributed nodes and not run
into ANY problems.
I Linearizable consistency: Under linearizable

consistency, all operations appear to be executed
atomically in an order that is consistent with the global
real-time ordering of operations.

I Sequential consistency: Under sequential consistency,
all operations appear to have executed automatically in
some order that is consistent with the order seen at
individual nodes and that is equal at all nodes (allows for
operations to be reordered as long as the order observed
on each node remains consistent).

The only way to distinguish them is if they can observe all the
inputs and timings going into the system; from the perspective
of a client interacting with a node, they are equivalent.



Weak Consistency Models

I Client-centric consistency models are consistency
models that involve the notion of a client or session in
some way. For example, a client-centric consistency
model might guarantee that a client will never see older
versions of a data item (e.g., always fecth data from the
addtional cache).

I Eventual consistency model says that if you stop
changing values, then a�er some undefined amount of
time all replicas will agree on the same value. Since it is
trivially satisfiable (liveness property only), it is useless
without supplemental information.



Outline

I Introduction
I.A Distributed Systems at A High Level
I.B Targets and Constraints
I.C Abstractions and Models
I.D Partition and Replicate

II System Models
II.A System Models on Nodes, Links, and Time (Order)
II.B The Consensus Problem
II.CMore About Consistency

III Time and Order
III.A Total Order and Partial Order
III.B Lamport Clocks and Vector Clocks

IV Replication for Strong Consistency

V Replication For Weak Consistency



Total and Partial Order

A TOTAL ORDER is a binary relation that defines an order for
every element in some set. Two distinct elements are
comparable when one of them is greater than the other. In a
PARTIALLY ORDERED set, some pairs of elements are not
comparable and hence a partial order doesn’t specify the
exact order of every item.
I Antisymmetry (both Total and Partial):

if a ≤ b and b ≤ a, then a = b,∀a, b ∈ X . (1)

I Transitivity (both Total and Partial):

if a ≤ b and b ≤ c, then a ≤ c,∀a, b, c ∈ X . (2)



Total and Partial Order

A TOTAL ORDER is a binary relation that defines an order for
every element in some set. Two distinct elements are
comparable when one of them is greater than the other. In a
PARTIALLY ORDERED set, some pairs of elements are not
comparable and hence a partial order doesn’t specify the
exact order of every item.
I Total (Total):

a ≤ b or b ≤ a,∀a, b ∈ X . (3)

I Reflexive (Partial):

a ≤ a,∀a ∈ X . (4)

Note that totality implies reflexivity; so a partial order is a
weaker variant of total order.



Time and Timestamp

Time and timestamps have several useful interpretations
when used in a program.
1. Order
2. Interpretation
3. Duration

By their nature, the components of distributed systems do not
behave in a predictable manner. They do not guarantee any
specific order, rate of advance, or lack of delay. Each node does
have some local order —— as execution is (roughly) sequential
—— but these local orders are independent of each other.

The synchronous system model has a global clock. The
partially synchronous model has a local clock. In the
asynchronous system model one cannot use clocks at all.



Time with a Global Clock Assumption

The global clock assumption is that there is a global clock of
perfect accuracy, and that everyone has access to that clock.
1. The global clock is basically a source of total order (exact

order of every operation on all nodes even if those nodes
have never communicated)

2. Assuming that clocks on distributed nodes are perfectly
synchronized means assuming that clocks start at the
same value and never dri� apart

3. We can use timestamps freely to determine a global total
order



Time with a Local Clock Assumption

The local clock assumption assumes that each machine has its
own clock, but there is no global clock.
1. We cannot use the local clock to determine whether a

remote timestamp occurred before or a�er a local
timestamp (timestamps from two machines are
non-comparable)

2. It assigns a partial order: events on each system are
ordered but events cannot be ordered across systems by
only using a clock

3. We can use timestamps to order events on a single
machine



Time with No Clock Assumption

With no clock assumption, we don’t use clocks at all and
instead track causality in some other way.
1. We can use counters and communication to determine

whether something happened before, a�er or
concurrently with something else.

2. With counters, we can determine the order of events
between di�erent machines, but cannot say anything
about intervals and cannot use timeouts (since we
assume that there is no “time sensor”)

3. This is a partial order: events can be ordered on a single
system using a counter and no communication, but
ordering events across nodes requires a message
exchange.



Use Time in Distributed Systems

The benefit of time:
1. Time can define order across a system without

communication
2. Time can define boundary conditions for algorithms

Timeout are widely used to determine whether a remote
machine has failed, or whether it is simply experiencing
high network latency



Lamport Clocks

Lamport clocks and vector clocks are replacements for
physical clocks which rely on counters and communication to
determine the order of events.

Lamport clock works as follows: Each process maintains a
counter using the following rules:
I Whenever a process does work, increment the counter
I Whenever a process sends a message, include the counter
I When a message is received, set the counter to

max
(
counterlocal, counterreceived

)
+ 1. (5)



Lamport Clocks

A Lamport clock allows counters to be compared across
systems, with a caveat: Lamport clocks define a partial order.
If timestamp(a) < timestamp(b), then
I a may have happened before b
I a may be incomparable with b

If a and b are from the same causal history, e.g. either both
timestamp values were produced on the same process; or b is
a response to the message sent in a then we know that a
happened before b.



Vector Clocks

A vector clock is an extension of Lamport clock, which
maintains an array [t1, ..., tN ] of N logical clcoks —— one per
each node. Rather than incrementing a common counter, each
node increments its own logical clock in the vector by one on
each internal event:
I Whenever a process does work, increment the logical

clock value of the node in the vector
I Whenever a process sends a message, include the full

vector of logical clocks
I When a message is received:

I Update each element in the vector to be max(local, received)
I Increment the logical clock value representing the current node

in the vector



Vector Clocks

An illustration on the vector clock:

The issue with vector clocks is mainly that they require one
entry per node, which means that they can potentially
become very large for large systems.



Failure Detectors

Given a program running on one node, how can it tell that a
remote node has failed? In the absence of accurate
information, we can infer that an unresponsive remote node
has failed a�er some reasonable amount of time has passed.

A failure detector is a way to abstract away the exact timing
assumptions. Failure detectors are implemented using
heartbeat messages and timers. Failure detectors can be
characterized by two properties, completeness and accuracy:
I Strong Completeness: Every crashed process is eventually

suspected by every correct process
I Weak Completeness: Every crashed process is eventually

suspected by some correct process
I Strong Accuracy: No correct process is suspected ever
I Weak Accuracy: Some correct process is never suspected



Failure Detectors

A failure detector with weak completeness can be
transformed to one with strong completeness (by
broadcasting information about suspected processes).

The di�iculty lies in the incorrect suspection on correct
process. If there is a hard maximum on the message delay
(only exist in synchronous system model), strong accuracy can
be achieved.

A be�er failure detector may output a suspicion level (a value
∈ [0, 1]) rather than a binary up or down judgement.



What We Really Care about When Discussing Time

While time and order are o�en discussed together, time itself
is not such a useful property. Algorithms don’t really care
about time as much as they care about more abstract
properties:
I the causal ordering of events
I failure detection (e.g. approximations of upper bounds on

message delivery)
I consistent snapshots (e.g. the ability to examine the state

of a system at some point in time)



Outline

I Introduction
I.A Distributed Systems at A High Level
I.B Targets and Constraints
I.C Abstractions and Models
I.D Partition and Replicate

II System Models
II.A System Models on Nodes, Links, and Time (Order)
II.B The Consensus Problem
II.CMore About Consistency

III Time and Order
III.A Total Order and Partial Order
III.B Lamport Clocks and Vector Clocks

IV Replication for Strong Consistency

V Replication For Weak Consistency



The Replication Problem

Replication is a group communication problem. For example,
I What arrangement and communication pa�ern gives us

the performance and availability characteristics we
desire?

I How can we ensure fault tolerance, durability and
non-divergence in the face of network partitions and
simultaneous node failure?



A General Communication Pa�ern
Assume that we have some initial database, and that clients
make requests which change the state of the database.

client

s1

s2

s3

s1

s2

s3

client

Req Res

Synchronous Asynchronous

1. (Request) The client sends a request to a server
2. (Sync) The synchronous portion of the replication takes place
3. (Response) A response is returned to the client
4. (Async) The asynchronous portion of the replication takes place

i



Synchronous Replication
Synchronous replication (a.k.a. active, or eager, or push, or
pessimistic replication) looks like this:

client

s1

s2

s3

s1

s2

s3

client

Req Res

Synchronous

During the synchronous phase, the first server contacts the
two other servers and waits until it has received replies from
all the other servers. Finally, it sends a response to the client
informing it of the result (e.g. success or failure).



Synchronous Replication

Synchronous replication is a write N -of-N approach. Before a
response is returned, it has to be seen and acknowledged by
every server in the system.
I The system cannot tolerate the loss of any servers
I Very strong durability guarantees are provided: The client

can be certain that all N servers have received, stored and
acknowledged the request when the response is returned



Asynchronous Replication
Asynchronous replication (a.k.a. passive replication, or pull
replication, or lazy replication) looks like this:

client

s1

s2

s3

s1

s2

s3

client

Req Res

Asynchronous

The master/leader/coordinator immediately sends back a
response to the client. It might at best store the update
locally, but it will not do any significant work synchronously
and the client is not forced to wait for more rounds of
communication to occur between the servers.



Asynchronous Replication

Asynchronous replication is a write 1-of-N approach: A
response is returned immediately and update propagation
occurs sometime later.
I The system is fast and more tolerant of network latency
I This arrangement can only provide weak, or probabilistic

durability guarantees: If nothing goes wrong, the data is
eventually replicated to all N machines. However, if the
only server containing the data is lost before this can take
place, the data is permanently lost

I This arrangement cannot ensure that all nodes in the
system always contain the same state



Major Replication Approaches

Except sync and async, replication techniques can also be
divided into
I Replication methods that prevent divergence (single-copy

systems): These methods behave like a single system
I Replication methods that risk divergence (multi-master

systems)
The replication algorithms that maintain single-copy
consistency include:
1. 1n messages (asynchronous primary/backup)
2. 2n messages (synchronous primary/backup)
3. 4n messages (2-phase commit, Multi-Paxos)
4. 6n messages (3-phase commit, Paxos with repeated leader

election)
More round of messages, more guarantees.



Major Replication Approaches

When you wait, you get worse performance but stronger
guarantees. The following digram gives regular replication
techniques and their properties.

Read Only

High Low Medium

Read/Write

Some None

Low High

Full Local Full

Eventual StrongConsistency

Transactions

Latency

Throughput

Data Loss

Failover

M/S Gossip 2PC Quorum



Primary/Backup Replication

Primary/Backup Replication (P/B)
In P/B (a.k.a. primary copy replication/master-slave
replication/log shipping), all updates are performed on the
primary, and a log of operations (or alternatively, changes) is
shipped across the network to the backup replicas.

1. asynchronous P/B: just update
2. synchronous P/B: update + acknowledge receipt

P/B can only o�er a best-e�ort guarantee:
1. they are susceptible to lost updates or incorrect updates if

nodes fail at inopportune times
2. they are susceptible to split-brain, where the failover to a

backup kicks in due to a temporary network issue and
causes both the primary and backup to be active at the
same time (the multi-master problem)



Two-Phase Commit (2PC)

Adding another round of messaging to P/B, we get the
Two-Phase Commit protocol (2PC).

I In the first phase (voting), the coordinator sends the
update to all the participants. Each participant processes
the update and votes whether to commit or abort. When
voting to commit, the participants store the update onto
a temporary area (the write-ahead log). Until the second
phase completes, the update is considered temporary



Two-Phase Commit (2PC)

Adding another round of messaging to P/B, we get the
Two-Phase Commit protocol (2PC).

I In the second phase (decision), the coordinator decides
the outcome and informs every participant about it. If all
participants voted to commit, then the update is taken
from the temporary area and made permanent. Having
the second pahse allows the system to roll back an update
when a node fails



Two-Phase Commit (2PC)

Drawbacks of 2PC:
I 2PC is prone to blocking, since a single node failure

(participant or coordinator) blocks progress until the node
has recovered

I 2PC is a CA —— it is not partition tolerant. The failure
model that 2PC addresses does not include network
partitions; the prescribed way to recover from a node
failure is to wait until the network partition heals



Network Partition

In the following several pages, we will discuss the common
properties of partition-tolerant consensus algorithms, and
introduce Paxos, Ra�, and ZAB.

Network partition tolerance systems that enforce single-copy
consistency requires that during a network partition, only
ONE partition of the system remains active since during a
network partition it is not possible to prevent divergence.

Typical partition tolerance consensus algorithms are Paxos
and Ra�.



Majority Decisions and Roles

Majority Votes
Partition tolerant consensus algorithms rely on a majority
vote. As long as (N/2+ 1)-of-N nodes are up and accessible,
the system can continue to operate.
i

Roles
Both Paxos and Ra� make use of distinct node roles. In
particular, they have a leader node (proposer in Paxos) that is
responsible for coordination during normal operation. During
normal operation, the rest of the nodes are followers (acceptors
or voters in Paxos).



Epochs
Each period of normal operation in both Paxos and Ra� is
called an epoch (term in Ra�).

I A�er a successful election, the same leader coordinates
until the end of the epoch. As shown in the diagram
above (from the Ra� paper), some elections may fail,
causing the epoch to end immediately.

I Epochs act as a logical clock, allowing other nodes to
identify when an outdated node starts communicating
—— nodes that were partitioned or out of operation will
have a smaller epoch number than the current one, and
their commands are ignored.

i



Leader Changes via Duels

All nodes start as followers; one node is elected to be a leader
at the start. During normal operation, the leader maintains a
heartbeat which allows the followers to detect if the leader
fails or becomes partitioned.

From Candidate to Leader
When a node detects that a leader has become
non-responsive (or, in the initial case, that no leader exists), it
switches to an intermediate state (called candidate in Ra�)
where it increments the term/epoch value by one, initiates a
leader election and competes to become the new leader. To be
elected a leader, a node must receive a majority of the votes.



From Candidate to Leader

One way to assign votes is to simply assign them on a
first-come-first-served basis. In this way, a leader will
eventually be elected.

Adding a random amount of waiting time between
a�empts at ge�ing elected will reduce the number of nodes
that are simultaneously a�empting to get elected.



Numbered Proposals within an Epoch

During each epoch, the leader proposes one value at a time to
be voted upon. Within each epoch, each proposal is
numbered with a unique strictly increasing number. The
followers (voters / acceptors) accept the first proposal they
receive.

Proposals to be Submi�ed, Proposed, and Accepted

1. When a client submits a proposal (e.g. an update
operation), the leader contacts all nodes in the quorum

2. If no competing proposals exist (based on the responses
from the followers), the leader proposes the value

3. If a majority of the followers accept the value, then the
value is considered to be accepted



Accepted Proposals’ Number cannot be Changed

Since it is possible that another node is also a�empting to act
as a leader, we need to ensure that once a single proposal has
been accepted, its value can never change. Otherwise a proposal
that has already been accepted might be reverted by a
competing leader.

Lamport states this as:

P2
If a proposal with value v has been chosen, then every
higher-numbered proposal that is chosen has value v.
i
With this, both followers and proposers are constrained from
changing a value that has been accepted by a majority.



Accepted Proposals’ Number cannot be Changed

In order to enforce this property, the proposers must first ask
the followers for their (highest numbered) accepted proposal
and value. If the proposer finds out that a proposal already
exists, then it must simply complete this execution of the
protocol, rather than making its own proposal.

Lamport states this as:

P2b
If a proposal with value v is chosen, then every higher-numbered
proposal issued by any proposer has value v.



The Core of Paxos

More specifically, we have:

P2c
For any value v and number n, if a proposal with v and n is
issued (by a leader), then there is a set S consisting of a majority
of acceptors (followers) such that either
1. no follower in S has accepted any proposal numbered less

than n, or
2. v is the value of the highest numbered proposal among all

proposals numbered less than n accepted by the followers in
S.

This is the core of the Paxos algorithm. It means that, if
multiple previous proposals exist, then the highest-numbered
proposal value is proposed.



Paxos
With the above content, we give the two-round
communication used in Paxos as follows:

I The prepare stage allows the proposer to learn of any competing or
previous proposals

I The second phase is where either a new value or a previously
accepted value is proposed

Paxos gives up liveness —— it may have to delay decisions
indefinitely until a point in time where there are no
competing leaders, and a majority of nodes accept a proposal.



ZAB and Ra�

I ZAB (Zookeeper Atomic Broadcast protocol)
Zookeeper is a system which provides coordination
primitives for distributed systems, and is used by many
Hadoop-centric distributed systems for coordination (e.g.
HBase, Storm, Kafka). Zookeeper is basically the open
source community’s version of Chubby.

I Ra�
It is designed to be easier to teach than Paxos, while
providing the same guarantees. In particular, the di�erent
parts of the algorithm are more clearly separated and the
paper also describes a mechanism for cluster membership
change. It has recently seen adoption in etcd inspired by
ZooKeeper.



Summary

In this section, we took a look at replication methods that
enforce strong consistency.
I P/B

I Single, static master
I Replicated log, slaves are not involved in executing operations

No bounds on replication delay
I Not partition-tolerant
I Manual/ad-hoc failover, not fault-tolerant

I 2PC
I Static master and unanimous vote: commit or abort
I cannot survive from the failure of the coordinator and a node

during a commit
I Not partition-tolerant, tail latency-sensitive

I Paxos
I Dynamic master and majority vote
I Robust to N/2− 1 simultaneous failures as part of protocol
I Less sensitive to tail latency



Outline

I Introduction
I.A Distributed Systems at A High Level
I.B Targets and Constraints
I.C Abstractions and Models
I.D Partition and Replicate

II System Models
II.A System Models on Nodes, Links, and Time (Order)
II.B The Consensus Problem
II.CMore About Consistency

III Time and Order
III.A Total Order and Partial Order
III.B Lamport Clocks and Vector Clocks

IV Replication for Strong Consistency

V Replication For Weak Consistency



Why We Care about Weak Consistency

Behaving like a single system by default is perhaps not
desirable:
I A system enforcing strong consistency doesn’t behave

like a distributed system: it behaves like a single system,
which is bad for availability during a partition

I For each operation, o�en a majority of the nodes must be
contacted at least twice

Instead of having a single truth, we will allow di�erent
replicas to diverge from each other —— both to keep things
e�icient but also to tolerate partitions —— and then try to find
a way to deal with the divergence in some manner.

Thus we have eventual consistency —— Nodes can for some
time diverge from each other, but that eventually they will agree
on the value.



Two Designs for Eventual Consistency

1. Eventual consistency with probabilistic guarantees
This type of system can detect conflicting writes at some
later point, but does not guarantee that the results are
equivalent to some correct sequential execution. In other
words, conflicting updates will sometimes result in
overwriting a newer value with an older one and some
anomalies can be expected to occur during normal
operation (or during partitions)

2. Eventual consistency with strong guarantees
This type of system guarantees that the results converge
to a common value equivalent to some correct sequential
execution. In other words, such systems do not produce
any anomalous results



Consistency as Logical Monotonicity

Some related terminologies:

CALM (Consistency as Logical Monotonicity)
If we can conclude that something is logically monotonic,
then it is also safe to run without coordination.
i

CRDTs (Convergent Replicated Data Types)
CRDTs are data types that guarantee convergence to the same
value in spite of network delays, partitions and message
reordering.



Amazon’s Dynamo

Dynamo is an eventually consistent, highly available
key-value store.

K-V Store
A K-V store is like a large hash table: a client can set values via
set(key, value) and retrieve them by key using get(key).
i
A Dynamo cluster consists of N peer nodes; each node has a
set of keys which is it responsible for storing. In Dynamo:
I Replicas may diverge from each other when values are

wri�en
I When a key is read, there is a read reconciliation phase

that a�empts to reconcile di�erences between replicas
before returning the value back to the client



Amazon’s Dynamo

The diagram below illustrates hwo Dynamo works.
Specifically, how a write is routed to a node and wri�en to
multiple replicas.



Step 1: Mapping Keys to Nodes

As the digram above shows, whether we are reading or
writing, the first thing that needs to happen is that we need to
locate where the data should live on the system. This is done
by ——

Consistent Hashing
With consistent hashing, a key can be mapped to a set of
nodes responsible for it by a simple calculation on the client.
i
This means that a client can locate keys without having to
query the system for the location of each key, which is much
faster than RPCs.



Step 2: Synchronous Replication

Once we know where a key should be stored, we need to do
some work to persist the value. This is a synchronous task; the
reason why we will immediately write the value onto multiple
nodes is to provide a higher level of durability.

Di�erent from Paxos or Ra�, Dynamo’s quorums are sloppy
(partial) quorums rather than strict (majority) quorums.

In partial quorums, di�erent subsets of the quorum may
contain di�erent versions of the same data. The user can
choose the number of nodes to write to and read from:
I W -of-N nodes required for a write
I W -of-N nodes required for a read



Step 2: Synchronous Replication

Writing to more nodes makes writes slower but increases the
prob. that the value is not lost; reading from more nodes
increases the prob. that the value read is up-to-date.

A typical configuration is N = 3 (e.g. a total of three replicas
for each value). And, the usual recommendation is that

W + R > N , (6)

because this means that the read and write quorums overlap
in one node - making it less likely that a stale value is
returned.



W + R > N is not Equal to Strong Consistency

A system where R +W > N can detect read/write conflicts,
since any read quorum and any write quorum share a
member. It guarantees that a previous write will be seen by a
subsequent read.

However, this only holds if the nodes in N never change ——
However, in Dynamo, the cluster membership can change if
nodes fail.

Even R = W = N would not guarantee strong consistency,
since while the quorum sizes are equal to N , the nodes in
those quorums can change during a failure.



Step 3: Conflict Detection and Read Repair

Systems that allow replicas to diverge must have a way to
eventually reconcile two di�erent values. In Dynamo, the
conflict resolution is done by tracking the causal history of a
piece of data by supplementing it with some metadata ——
Clients must keep the metadata when they read, and must
return back the metadata when writing.

Several ways to detect conflicts:
I Timestamps: The value with the higher timestamp value

wins
I Version numbers
I Vector clocks: Concurrent and out of date updates can be

detected. Performing read repair then becomes possible,
though in some cases (concurrent changes) we need to
ask the client to pick a value



Read Repair when Using Vector Clock

When reading a value, the client contacts R of N nodes and
asks them for the latest value for a key. It takes all the
responses, discards the values that are strictly older (using the
vector clock value to detect this). And:
1. If there is only one unique vector clock + value pair, it

returns that
2. If there are multiple vector clock + value pairs that have

been edited concurrently (e.g. are not comparable), then
all of those values are returned

Thus, the client must occasionally handle these cases by
picking a value based on some use-case specific criterion.

Note that in a practical system the vector clock is not allowed
to grow forever. Thus, garbage colleciton is required.



Step 4: Replication Synchronizaiton

Given that the Dynamo system design is tolerant of node
failures and network partitions, it needs a way to deal with
nodes rejoining the cluster a�er being partitioned, or when a
failed node is replaced or partially recovered —— Replica
synchronization is used to bring nodes up to date a�er a
failure, and for periodically synchronizing replicas with each
other. Specific techniques:
I Gossip: Nodes have some probability p of a�empting to

synchronize with each other. Every t seconds, each node
picks a node to communicate with. This provides an
additional mechanism beyond the synchronous task (e.g.
the partial quorum writes) which brings the replicas up to
date.



Step 4: Replication Synchronizaiton

Given that the Dynamo system design is tolerant of node
failures and network partitions, it needs a way to deal with
nodes rejoining the cluster a�er being partitioned, or when a
failed node is replaced or partially recovered —— Replica
synchronization is used to bring nodes up to date a�er a
failure, and for periodically synchronizing replicas with each
other. Specific techniques:
I Merkle Trees: A data store can be hashed at multiple

di�erent levels of granularity: a hash representing the
whole content, half the keys, a quarter of the keys and so
on. By maintaining this fairly granular hashing, nodes
can compare their data store content much more
e�iciently than a naive technique. Once the nodes have
identified which keys have di�erent values, they
exchange the necessary information to bring the replicas
up to date.



Probabilistically Bounded Staleness (PBS)

The steps in Dynamo are:
1. consistent hashing to determine key placement
2. partial quorums for reading and writing
3. conflict detection and read repair via vector clocks
4. gossip for replica synchronization

i
The behavior of such a system can be characterized as
Probabilistically Bounded Staleness (PBS).

PBS
PBS estimates the degree of inconsistency by using information
about the anti-entropy (gossip) rate, the network latency and
local processing delay to estimate the expected level of
consistency of reads.



Convergent Replicated Data Types (CRDT)

Operations on CRDT is able to converge on the same value in
an environment where replicas only communicate
occasionally, the operations need to be order-independent and
insensitive to (message) duplication/redelivery. The
operations need to be:
I Associative: a+ (b + c) = (a+ b) + c
I Commutative: a+ b = b + a
I Idempotent : a+ a = a, so that duplication does not ma�er



Typical CRDTs
I Counters

I Grow-only counter (merge = max(values); payload = single int)
I Positive-negative counter (consists of two grow counters, one for

increments and another for decrements)
I Registers

I Last-write-wins register (timestamps or version numbers;
merge = max(ts); payload = blob)

I Multi-valued register (vector clocks; merge = take both)
I Sets

I Grow-only set (merge = union(items); payload = set; no
removal)

I Two-phase set (consists of two sets, one for adding, and another
for removing; elements can be added once and removed once)

I Unique set (an optimized version of the two-phase set)
I Last-write-wins set (merge = max(ts); payload = set)
I Positive-negative set (consists of one PN-counter per set item)
I observed-remove set

I Graphs and text sequences



The CALM Theorem

Order-independence is an important property of any
computation that converges —— If the order in which data
items are received influences the result of the computation,
then there is no way to execute a computation without
guaranteeing order.

The CALM Theorem
The CLAM theorm states that logically monotonic programs
are guaranteed to be eventually consistent.


	I Introduction
	I.A Distributed Systems at A High Level
	I.B Targets and Constraints
	I.C Abstractions and Models
	I.D Partition and Replicate

	II System Models
	II.A System Models on Nodes, Links, and Time (Order)
	II.B The Consensus Problem
	II.C More About Consistency

	III Time and Order
	III.A Total Order and Partial Order
	III.B Lamport Clocks and Vector Clocks

	IV Replication for Strong Consistency
	V Replication For Weak Consistency

