A Mobility-aware Cross-edge Computation Offloading Framework for Partitionable Applications

Hailiang Zhao¹² Shuiguang Deng¹ Cheng Zhang¹ Wei Du² Qiang He³ Jianwei Yin¹

¹Zhejiang University, Hangzhou, China

²Wuhan University of Technology, Wuhan, China

³Swinburne University of Technology, Melbourne, Australia

July 10, 2019

- 4 回 ト 4 三 ト 4 三 ト

- A Brief Introudction to Mobile Edge Computing (MEC)
- What is the Problem?

Hailiang Zhao (Zhejiang University)

Introduction

- A Brief Introudction to Mobile Edge Computing (MEC)
- What is the Problem?

2 Cross-edge Computation Offloading

- System Model
- Problem Formulation
- Proposed Framework and Algorithms
- Experimental Evaluation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction

- A Brief Introudction to Mobile Edge Computing (MEC)
- What is the Problem?

2 Cross-edge Computation Offloading

- System Model
- Problem Formulation
- Proposed Framework and Algorithms
- Experimental Evaluation

What is Mobile Edge Computing?

Mobile Edge Computing

Mobile Edge Computing (MEC) is a new computation paradigm:

- depolyed at the network edge
- use widespread wireless access network (Small-cell Base Station)
- oprovide service and computing resource

Hailiang Zhao (Zhejiang University)

Cross-edge Computation Offloading

What's it properties?

Edge site

An edge site is a micro data center with applications depolyed, attached to a small-cell base station (SBS).

- Heterogeneous edge sites
- Over mobility
- In Edge site selection and user profile handover
- Overlapped signal coverage of SBSs (Corss-edge Collaboration!)
- Partitionable applications (data stream)
- Insufficient battery energy of mobile devices

Motivation Scenario

< □ > < □ > < □ > < □ > < □ >

Problem Definition

For partitionable applications, how to make the offloading strategy with the minimum overall cost achieved?

Composition of overall cost

- execution delay
- task dropping penalty
- collaboration cost

Energy Harvesting (EH) technology is adopted.

Hailiang Zhao (Zhejiang University)

Cross-edge Computation Offloading

July 10, 2019 7 / 16

Introduction

- A Brief Introudction to Mobile Edge Computing (MEC)
- What is the Problem?

2 Cross-edge Computation Offloading

- System Model
- Problem Formulation
- Proposed Framework and Algorithms
- Experimental Evaluation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

System Model

- Local execution latency evaluation
 - execution latency: $\tau_i^{lc} \triangleq \eta_i^l / f_i$
 - 2 energy consumption: $\epsilon_i^l \triangleq \kappa_i \cdot \eta_i^l f_i^2$
- Offloading latency evaluation
 - transmission delay: $\tau_{i,j}^{tx}(t) \triangleq \frac{\mu_i^r}{\sum_{j \in \mathcal{M}_i(t)} I_{i,j}(t)} \cdot \frac{1}{R_{i,j}(t)}$ execution delay: $\tau_{i,j}^{rc}(t) \triangleq \frac{\eta_i^r}{f_j \cdot \sum_{j \in \mathcal{M}_i(t)} I_{i,j}(t)}$

 - **3** collaboration cost: $\varphi \cdot \sum_{i \in \mathcal{M}_{i}(t)} I_{i,i}(t)$
 - a constraint:

 $\tau_d \geq \max_{i \in \mathcal{M}_i(t)} \left\{ \tau_{i,i}^{tx}(t) + \tau_{i,i}^{rc}(t) \right\} + \tau_i^{lc} + \varphi \cdot \sum_{i \in \mathcal{M}_i(t)} I_{i,i}(t)$

- Battery energy level evaluation
 - envolution function: $\psi_i(t+1) = \psi_i(t) - \sum_{i \in \mathcal{M}_i(t)} \epsilon_{i,i}^{tx}(t) \cdot I_{i,j}(t) - \epsilon_i^l + \alpha_i(t)$
 - **2** constraint: $\epsilon_i^l + \sum_{i \in \mathcal{M}_i(t)} \epsilon_{i,j}^{tx}(t) I_{i,j}(t) \leq \psi_i(t)$

Problem Formulation

A non-convex optimization problem

$$\mathcal{P}_1: \min_{\forall i, \mathbf{I}_i(t), \alpha_i(t)} \quad \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\bigg[\sum_{i \in \mathcal{N}} \mathcal{C}(\mathbf{I}_i(t))\bigg],$$

with several constraints.

$$\mathcal{C}(\mathbf{I}_{i}(t)) \triangleq \max_{\substack{j \in \mathcal{M}_{i}(t) : I_{i,j'}(t) = 1}} \left\{ \tau_{i,j}^{tx}(t) + \tau_{i,j}^{rc}(t) \right\} \\ + \tau_{i}^{lc} + \varphi \cdot \sum_{\substack{j \in \mathcal{M}_{i}(t)}} I_{i,j}(t) + \varrho_{i} \cdot D_{i}(t)$$

Hailiang Zhao (Zhejiang University)

э

Proposed Framework

Hailiang Zhao (Zhejiang University)

July 10, 2019

11/16

Proposed Algorithms

The CCO algorithm

Lyapunov optimization (drift-plus-penalty)

$$\mathcal{P}_2: \min_{\forall i, \mathbf{I}_i(t), \alpha_i(t)} \Delta_V^{up}(\boldsymbol{\Theta}(t)),$$

with several constraints.

$$\Delta_V^{up}(\boldsymbol{\Theta}(t)) \triangleq \sum_{i=1}^N \psi_i'(t) \left[\alpha_i(t) - \epsilon_i^l - \sum_{j=1}^M \epsilon_{i,j}^{tx}(t) I_{i,j}(t) \right] + V \sum_{i=1}^N \mathcal{C}(\mathbf{I}_i(t)) + C$$

Hailiang Zhao (Zhejiang University)

▶ ৰ ≣ ▶ ≣ ৩৫৫ July 10, 2019 12/16

< 回 > < 三 > < 三

Proposed Algorithms

The CCO algorithm

Algorithm 1 Cross-edge Computation Offloading (CCO)

- At the beginning of the *t*th time slot, obtain i.i.d. random events A(t), E^h(t) ≜ [E^h₁(t), ..., E^h_N(t)] and channel state information.

 ∀i ∈ N, decide I^{*}_i(t), α^{*}_i(t) by solving the deterministic problem P₂.

 ∀i ∈ N, update the battery energy level ψ_i(t).

 t ← t + 1.
- optimal energy harvesting: $\alpha_i^{\star}(t)$
- **2** optimal edge site selection: $\mathbf{I}_i^{\star}(t)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Benchmark Policies

- Random Selection (RS)
- Greedy Selection on Communication (GSC1)
- Greedy Selection on Computation (GSC2)

Parameter settings

Parameter	Value	Parameter	Value
$ au_d$	2 ms	ϱ_i	2 ms
φ	0.02 ms	ρ_i	0.6
μ_i^l	100 bits	μ_i^r	3000 bits
f_i	1.5 GHz	f_j	32 GHz
κ_i	10^{-28}	ψ_i^{safe}	40 mJ
N_j^{max}	5	ω	$1.5/\sum_{i\in\mathcal{N}_j(t)}I_{i,j}(t)$ GHz
ϖ_0	10^{-13} W	p_i^{tx}	1 W
g_0	10^{-4}	$E_{i,h}^{max}$	$4.8\times10^{-4}~{\rm J}$

Optimality and stability

Figure: Average cost of mobile devices.

Optimality and stability

Figure: Average battery energy level of mobile devices.

э

< □ > < □ > < □ > < □ > < □ > < □ >