
Characterizing Microservice Dependency
and Performance: Alibaba Trace Analysis

Hailiang ZHAO@ ZJU-CS
http://hliangzhao.me

May 23, 2024

A lecture slide for the paper —— Luo et al., Characterizing Microservice
Dependency and Performance: Alibaba Trace Analysis, in: SoCC ’21.

http://hliangzhao.me
https://dl.acm.org/doi/abs/10.1145/3472883.3487003
https://dl.acm.org/doi/abs/10.1145/3472883.3487003

Outline

Background and Overview
Microservices Architecture
Alibaba Trace Overview

Anatomy of Call Graphs
Characterizes of Microservice Call Graphs
Two-Tier Invocation Analysis

Dependency between Stateless Microservices

Microservice Runtime Performance
Microservice Call Rate
Microservice RT Performance

Microservice Graph Model

Outline

Background and Overview
Microservices Architecture
Alibaba Trace Overview

Anatomy of Call Graphs
Characterizes of Microservice Call Graphs
Two-Tier Invocation Analysis

Dependency between Stateless Microservices

Microservice Runtime Performance
Microservice Call Rate
Microservice RT Performance

Microservice Graph Model

Call Graph
Call graph. The request from users is called an origin request
and this request is first sent to an Entering Microservice, which
then triggers a series of calls between related microservices.

Figure 1: Illustrations of microservices.

▶ Stateless services are isolated from state data
▶ Stateful services, e.g., databases and Memcached, need

to store data

Call Graph

Communication Paradigms. There exist three types of
communication paradigms between a pair of microservices:
▶ Inter-process communication (IP) happens between

stateless and stateful microservices
▶ Remote invocation, such as RPC, is a two-way

communication under which a DM must return a result
to its corresponding UM ▷ high efficiency

▶ Indirect communication such as MessageQueue (MQ)
is one-way only (publish & subscribe) ▷ good flexibility

Hierarchical Call Dependencies

Hierarchical Call Dependencies. The call graph can be
divided into several parts according to the edge of indirect
communication. Each part can consist of multiple two-tier
invocations with each consisting of a UM and all the DMs it
calls (3 parts for the example in Fig. 1).

The call depth (a.k.a. the number of tiers) is the length of the
longest path (5 for the example in Fig. 1).

Response Times

RTs. The response time (RT) of a call is the length of the inter-
val from UM calling its DM to it receiving the response.1

▶ Since an indirect communication does not need to return
a result, RT of an origin request is dominated by the part
associated with its user (e.g., Part 1 in Fig. 1(a))

▶ The same class of user requests can trigger different
microservice call procedures and thus incur
heterogeneous RTs

1There is a place for call graph aware response time modeling!

Physical Running Environment

The authors analyze more than ten billion call traces among
nearly twenty thousand microservices in 7 days from Alibaba
cluster.
▶ Physical running environment. Alibaba clusters adopt

Kubernetes to manage the bare-metal cloud.
▶ Online services are running in containers and managed by

Kubernetes directly
▶ Batch jobs are running in secure containers and delivered to

Fuxi for further scheduling

bare-metal + secure containers → minimize interference

▶ Stateful services are deployed in a dedicated cluster which is
not shared with other batch applications or stateless services

Microservices System Metrics

The monitoring system collects several system metrics for
each container produced in every minute and takes the
average to record.
▶ Hardware. Cache misses per kilo instructions, CPI
▶ OS. CPU & memory utilization
▶ Application. JVM heap utilization, JVM GC

Note that a microservice usually runs in hundreds of
containers.

A data sample looks like:

TimeStamp,Metrics,Values,Microservices, PodIP

Microservices Invocations in a Call Graph

The monitoring system also records the call dependency
between related microservices within a call graph.
▶ TraceID. All invocations triggered by the same user

request share the same TraceID
▶ Interface, through which an UM calls a DM
▶ UM Pod IP and DM Pod IP
▶ RT
▶ rpcID, which contains the ID information of a pair of

microservices
▶ Communication Paradigm, which includes IP, RPC, or

indirect communication, e.g., MQ
An interesting data —— Among all the calls that happened
between two stateless microservices in the traces, RPC, MQ
and IP account for 76%, 23% and 1% of communication
paradigms respectively.

Aggregate Statistics

The monitoring system also records all the calls (received from
UMs or sent to DMs) related to each individual microservice.
▶ Provided/Consumed Interface. A microservice contains

multiple provided interfaces to be called by its UMs. It
calls DMs via different consumed interfaces.

▶ call times quantifies the number of calls generated from
each interface in one minute with the time recorded by
TimeStamp

▶ RT characterizes the average response time among all
these calls within one minute for each interface

Outline

Background and Overview
Microservices Architecture
Alibaba Trace Overview

Anatomy of Call Graphs
Characterizes of Microservice Call Graphs
Two-Tier Invocation Analysis

Dependency between Stateless Microservices

Microservice Runtime Performance
Microservice Call Rate
Microservice RT Performance

Microservice Graph Model

Characterizes of Microservice Call Graphs

Observation 1
The size of call graphs follows a heavy-tail distribution.

Figure 2: The number of microservices in a graph follows a Burr
distribution (within 99th percentile).

▶ The largest call graph can even consist of hundreds to
thousands of microservices

▶ For these call graphs of large size (containing more than
40 microservices), about 50% of their microservices are
Memcacheds (faster than from DB)

Characterizes of Microservice Call Graphs (Cont’d)

Observation 1
The size of call graphs follows a heavy-tail distribution.

Figure 3: The distribution of call depth in all call graphs.

▶ A common graph depth in Alibaba traces is 3
▶ The call graphs have an average depth of 4.27, with a

standard derivation of 3.25
Thus, it is extremely challenging to configure the right number
of containers for all microservices in production clusters.

Characterizes of Microservice Call Graphs (Cont’d)

Observation 2
Microservice call graph behaves likes a tree and many of them
only contain a long chain.

Figure 4: The maximum call depth (95th percentile) under a fixed number
of microservices.

▶ The call depth stagnates when the number of
microservices increases. This is due to that a microservice
graph tends to branch out quickly like a tree to include
more two-tier invocations (significantly different from
DAG graphs from batch applications)

Characterizes of Microservice Call Graphs (Cont’d)

Observation 2
Microservice call graph behaves likes a tree and many of them
only contain a long chain.

Figure 5: Distribution of the degree of stateless microservices in individual
graphs and aggregate calls.

▶ More than 10% of stateless microservices have an
out-degree of at least 5, while most of them have an
in-degree of 1

▶ Note that a call is sent to a stateful microservice, it will
not incur further calls2

2This characterize can be used in modeling.

Characterizes of Microservice Call Graphs (Cont’d)

Observation 2
Microservice call graph behaves likes a tree and many of them
only contain a long chain.

Figure 6: The distributions of the number of microservices in different tiers.

▶ As long as the depth becomes larger than two, the
corresponding tier includes only one microservice with a
high probability (above 60%) =⇒ As such, many deep
graphs can be represented by one long chain

Characterizes of Microservice Call Graphs (Cont’d)

Observation 3
Many stateless microservices are hot-spots.

▶ As depicted in Fig. 5, more than 5% of microservices have
in-degrees of 16 in aggregate calls

▶ These super microservices appear in nearly 90% of call
graphs and handle 95% of total invocations in Alibaba
traces

This result implies that, the loosely-coupled microservice
architecture leads to a significant unbalance of workload
across different microservices.

It indicates how should we do the scaling.

Characterizes of Microservice Call Graphs (Cont’d)

Observation 4
Microservice call graphs are highly dynamic.

▶ Microservice call graphs present significant topological
differences between each other even among all the graphs
generated by the same online services

▶ Once a call is sent to an entering microservice, the
subsequent calls can be quite complicated depending on
the status of a user

What about clustering the call graphs into clusters
based on their topology?

Two-Tier Invocation Analysis

Observation 1
The call patterns of stateless microservices vary a lot over
different tiers.
There are three types of stateless microservices: normals,
relays, and blackholes.

Figure 7: The percentage of black holes (relays) increases (decreases) with
the call depth growing (call graphs with long depth take small portion).

Two-Tier Invocation Analysis (Cont’d)

Observation 1
The call patterns of stateless microservices vary a lot over
different tiers.

▶ The probability that whether a normal microservice will
call other microservices is still tier specific

▶ In expection, normal relays decrease over tiers. However,
as shown in Fig. 7, when the call depth is above 8, such a
probability increases over tiers

It is quite challenging to simulate production call graphs
using simple mathematical models.

Two-Tier Invocation Analysis (Cont’d)

Observation 2
MQ contributes greatly to reducing the e2e RT in deep graphs.

Figure 8: The distributions of communication paradigms in different tiers.

▶ The percentage of S2M reduces linearly in call depth
when the depth is above 3 ▷ increased cache miss

▶ The percentage of S2D increases sublinearly⇒ The left
are filled by MQ ▷ help reducing the e2e RT

Outline

Background and Overview
Microservices Architecture
Alibaba Trace Overview

Anatomy of Call Graphs
Characterizes of Microservice Call Graphs
Two-Tier Invocation Analysis

Dependency between Stateless Microservices

Microservice Runtime Performance
Microservice Call Rate
Microservice RT Performance

Microservice Graph Model

Cyclic Dependency

When a DM replies to its UM immediately without involving
other microservices, a cyclic dependency exists.

Figure 9: Cyclic dependency between a pair of microservices.

▶ Strong dependency. The entering interface of UM is the
same as the reply interface for DM calls to call (I1 = I3)

▶ Weak dependency. Those two interfaces are different

Cyclic Dependency

Observation
Cyclic dependency makes up a non-negligible fraction among all
dependencies.

▶ As shown in the table, cyclic dependency contributes to
more than 7.8% of the total microservice dependencies
and most are via RPC calls (2.7% are strong dependencies)

▶ The number of cyclic calls involving three microservices is
relatively small (< 200 among billions of calls)

Hints. Confirm whether there is a strong need to combine the
two interfaces into a single one to avoid deadlocks.

Coupled Dependency

A UM can repeatedly call the same DM multiple times in a
two-tier invocation.

Call Probability(Y2X) = Count(X)/Sum, (1)
Call Time(Y2X) = Count(X)/N . (2)

When both are large, they form a strong coupled dependency.
▶ Count(X): the number of times Y calls X (X can be called

multiple times by Y within the same two-tier invocation)
▶ Sum: The number of two-tier invocations triggered by Y

in all call graphs
▶ N : The number of those two-tier invocations in which X

was called

Coupled Dependency (Cont’d)

Observation
A noticeable fraction of pairs have strong coupled dependency
and their interfaces could be coupled together for performance
optimization.

Figure 10: A high product means the DM will be called by UM within the
same pair repeatedly with a high probability.

▶ More than 10% of pairs of microservices have a product of
no less than 5. 17% of pairs with strong coupled
dependency do not share DM with any other microservice

Couple the called interface of DM with that of UM together!

Parallel Dependency
In a two-tier invocation, a UM calls its multiple DMs either in
a sequential manner or in parallel. Parallel dependency can
help to greatly reduce the RT of upstream microservices
(couple the two called interfaces into one).

Observation
Strong parallel dependency rarely exists in Alibaba traces.

Figure 11: Cumulative distribution of the probability of parallel
dependency between all pairs of microservices.

▶ 10% of pairs of microservices have a parallel dependency
with probability larger than 0.05. Only 0.6% of pairs’
probability larger than 0.9

Outline

Background and Overview
Microservices Architecture
Alibaba Trace Overview

Anatomy of Call Graphs
Characterizes of Microservice Call Graphs
Two-Tier Invocation Analysis

Dependency between Stateless Microservices

Microservice Runtime Performance
Microservice Call Rate
Microservice RT Performance

Microservice Graph Model

Microservice Call Rate

Microservices run in hundreds to thousands of containers in a
hybrid cluster and serve time-varying requests with highly
dynamic call dependencies.

Microservice call rate (MCR) measures the number of calls
received by a microservice in each minute per container.

Figure 12: The correlation between MCR and diff. performance metrics.

We expect that a large MCR leads to a high resource pressure.

Microservice Call Rate

Observation
MCRs highly correlate with CPU utilization and Young GC but
not with memory utilization.

▶ All microservices show a positive correlation between
the CPU utilization and MCR and more than 80% of
them yield a strong correlation (SC > 0.6)

▶ YongGC Count and YoungGC Time also show a strong
correlation with MCR

▶ More than 20% of microservices have a negative
correlation between MCR and memory utilization
(memory utilization is almost stable at runtime in most
containers in Alibaba microservice traces)

Microservice RT Performance

We cluster all the call graphs of each service into multiple
classes (by the InfoGraph algorithm). Each class contains
graphs of similar topology and call paths.
▶ Within each class, we compute both the standard

derivation and the mean of the end-to-end RTs (i.e., RTs of
the Entering Microservice) and then take the ratio between
them as a measurement of the intra-cluster-variance.

▶ Similarly, we collect all end-to-end RTs from all classes of
a service to measure the inter-cluster-variance.

Microservice RT Performance

Observation 1
End-to-End RTs of an online service are stable among call graphs
of similar topologies but vary significantly across different
topologies.

Figure 13: Cumulative distribution of RT intra-cluster variance to RT
inter-cluster variance ratios.

▶ More than 90% of online services have a small ratio
(< 0.6), indicating the RTs within each cluster are much
more stable than that across different clusters

Microservice RT Performance

Online microservices usually co-exist with batch processing
jobs on the same physical host to improve cluster utilization.
⇒ resource interference!

To measure its impact,
▶ We take the RT under a low host utilization (i.e., 10%) as a

baseline and measure the normalized RTs under different
host utilization for a fixed MCR.

▶ We then average all the normalized values across
different MCRs under each host utilization. Finally, we
compute the 75th percentile normalized RT among all
microservices.

Microservice RT Performance

Observation 2
RT performance can be greatly degraded due to a high host CPU
utilization.

Figure 14: Performance degradation due to resource inter- ferences on the
same physical host.

▶ When the host CPU utilization exceeds 40% (80%), the RT
of a microservice can be degraded by more than 20%
(30%) in average

▶ When the host memory utilization is below 60%, the
interference can be ignored

Microservice RT Performance

Observation 3
RTs of a microservice are stable when the call rate varies.

Figure 15: RT performance under different normalized microservice call
rates —— Most calls in Alibaba clusters can be processed immediately
without any queueing delay.

There is a large room to improve the resource utilization of
microservices by resizing a proper number of running
containers.

Outline

Background and Overview
Microservices Architecture
Alibaba Trace Overview

Anatomy of Call Graphs
Characterizes of Microservice Call Graphs
Two-Tier Invocation Analysis

Dependency between Stateless Microservices

Microservice Runtime Performance
Microservice Call Rate
Microservice RT Performance

Microservice Graph Model

Stochastic Graph Model

A graph Gs = (Vs, Es) is initialized by a starting service s and
can grow with more and more two-tier invocations.
▶ Each microservice v ∈ Vs has a tier number (call depth)

d(v) (d(s) = 1). The largest tier number in Gs is denoted
by hs.

▶ Each edge e(vi, vj)i<j ∈ Es is directed and formed by one
parent vi and one child vj .

▶ Each v ∈ Vs has a label l(v) that denotes its type:
l(v) ∈ L := {db,Memcached, blackhole, replay, normal}.3

▶ We consider only two adjcent tiers, i.e., for each
e(vi, vj) ∈ Es, we have d(vj) = d(vi) + 1.

3Add req?

Stochastic Graph Model

Let C(v) = |vc : (v, vc) ∈ Es| denote the children set of v. For
v ∈ Vs with d(v) = h, |C(v)| follows a random distribution
given by

Pr(|C(v)| = j) = Fn(j),

where Fh is the distribution of the number of microservices in
a two-tier invocation starting from tier h in Alibaba traces.

Each child v ∈ C(v) takes a label from L randomly based on
the following distribution:

Pr(l(v) = ϕ) = Gh+1(ϕ), ∀ϕ ∈ L,

where Gh+1(ϕ) can be simply derived by combining results
from Fig. 7 and Fig. 8.

	Background and Overview
	Microservices Architecture
	Alibaba Trace Overview

	Anatomy of Call Graphs
	Characterizes of Microservice Call Graphs
	Two-Tier Invocation Analysis

	Dependency between Stateless Microservices
	Microservice Runtime Performance
	Microservice Call Rate
	Microservice RT Performance

	Microservice Graph Model

