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Non-Clairvoyant Online Job Scheduling

It is di�icult for the cluster scheduler to allocate an appropriate

number of computing devices to each multi-server job with a high

system e�iciency.

Service locality. Could by described by a bipartite graph.

Unknown arrival pa�erns of jobs. We don’t know a job will arrive

or not at some time t.
Unknown processing speeds (fluctuated around a certain value).
This falls into the non-clairvoyant job scheduling scenarios.

Existing works cannot be applied.
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Modeling with Bipartite Graph

We use the bipartite graph (L,R, E) to model service locality.

Time is slo�ed, at each time t ∈ T := {1, 2, ..., T}, a job is yielded

from port l ∈ L with prob. ρl(t). There are K types of computing

devices in the cluster, including CPUs, GPUs, NPUs, and FPGAs.
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Utility Formulation

The number of type-k devices is ck. Each type-l job requests

a(l,r)
k ∈ N+

type-k devices. The decision variables are:

x(t) :=
[
x(l,r)(t)

]T
(l,r)∈E ∈ X :=

{
0, 1
}|E|

. (1)

∀r ∈ Rl, x(l,r)(t) = 0 if 1l(t) = 0.

Formulate the utility of the type-l job at time t:

Ul(t) :=
∑
r∈Rl

x(l,r)(t)Z(l,r)(t)︸ ︷︷ ︸
gain

−
∑
k

∑
r∈Rl

fk(a
(l,r)
k )(t)x(l,r)(t)︸ ︷︷ ︸

operating cost

, (2)

where Z(l,r)(t) is a stochastic variable following an underlying

distribution with the expectation of v(l,r).
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Scheduling without Knowing the Processing Speeds

Z(l,r)(t) captures the processing speed experienced by type-l job at

time t. We don’t know the value of Z(l,r)(t) until time t elapses.
Correspondingly, v(l,r) can never be known, but can be approximated
through learning.

Our goal is to maximize the expectation of job utilities:

P1 : max
∀t∈T :x(t)∈X

lim
T→∞

T∑
t=1

E
[∑

l∈L

Ul(t)
]

s.t.
∑

(l,r)∈E

a(l,r)
k x(l,r)(t) ≤ ck,∀k ∈ K, t ∈ T , (3)

∑
r∈Rl

x(l,r)(t) = 0 if 1l(t) = 0,∀l ∈ L, t ∈ T . (4)
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Scheduling with Evolving Statistics

We denote by Z̃(t) the column vector[
Z(l,r)(t)−

∑
k∈K

fk(a
(l,r)
k )

]T
∀(l,r)∈E

and normalize it into [0, 1]|E|. We further introduce
υ̃ :=

[
υ(l,r) −

∑
k∈K fk

(
a(l,r)
k

)]T
∀(l,r)∈E ∈ [0, 1]|E|

x∗(t) := argmaxx(t)∈Ω(t)

{
υ̃Tx(t)

}
Ω(t) :=

{
x(t) ∈ X | (3) & (4) hold at time t

}
.

(5)

Then, P1 can be wri�en as minx(t)∈Ω(t)
∑

t E
[
Z̃(t)Tx(t)

]
.
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Scheduling with Evolving Statistics

At each time t, we define

n(l,r)(t) :=
t∑

t′=1

x(l,r)
(
t′
)

(6)

as the cumulative quantity of channel (l, r) ∈ E been used up to time

t. Based on it, we introduce the following statistics:

υ̂(l,r)(t) :=

{ ∑t
t′=1 x(l,r)(t

′)Z̃(l,r)(t′)
n(l,r)(t)

n(l,r)(t) > 0
0 otherwise

(7)

σ̂2
(l,r)(t) :=

{
g(t)

2n(l,r)(t)
n(l,r)(t) > 0

+∞ otherwise,
(8)

where g(t) := ln t + 4 ln(ln t + 1) ·maxt′∈T
{

maxx∈Ω(t′) ‖x‖1
}
is

designed to modeling the variance of the estimate.
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Scheduling with Evolving Statistics

With the statistics, we introduce the following deterministic problem
P3(t):

P3(t) : max
x(t)∈Ω(t)

Ũ(x(t)) := δ(t) + υ̂(t)Tx(t)︸ ︷︷ ︸
mean

+
√

σ̂2(t)Tx(t)︸ ︷︷ ︸
standard deviation

s.t. (3),

δ(t) > 0, lim
t→∞

δ(t) = 0, (9)

where υ̂(t) := [υ̂(l,r)(t)]T(l,r)∈E , and σ̂2(t) := [σ̂2
(l,r)(t)]

T
(l,r)∈E . Note that

(4) is not considered, temporarily.

{δ(t)}t∈T could be any sequence converges to zero. For instance,

δ(t) :=
1

ln
(

ln t + 1
)

+ 1
. (10)
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Scaling Up

At each time t, based on δ(t), we define the following scale-up
statistics for υ̂(l,r)(t) and σ̂2

(l,r)(t) respectively:

Υ̂(l,r)(t) :=
⌈
ξ(t)υ̂(l,r)(t)

⌉
(11)

Σ̂2
(l,r)(t) :=

⌈
ξ2(t)σ̂2

(l,r)(t)
⌉
, (12)

where

ξ(t) :=

⌈
maxt′∈T

{
maxx∈Ω(t′) ‖x‖1

}
δ(t)

⌉
(13)

is the scaling size at time t.
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A Series of Budgeted IPs

At each time t, we introduce several budgeted integer programming

problems P4(s, t) for each s ∈ S(t), where

S(t) :=

{
0, 1, ..., ξ(t) ·max

t′∈T
max
x∈Ω(t′)

‖x‖1
}
, (14)

as follows:

P4(s, t) : max
x(t)∈X

Σ̂2(t)Tx(t)

s.t. (3), (9),

Υ̂(t)Tx(t) ≥ s. (15)

In P4(s, t), Σ̂2(t) and Υ̂(t) are the corresponding column vectors for

(11) and (12), respectively. From P3 to P4, the O(ln T)-regret is
guaranteed.
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A Series of Budgeted IPs

Let us use x∗P4
(s, t) to denote the optimal solution for P4(s, t). Then,

the final solution to max{P4(s, t)}s∈S(t) at time t, denoted by x∗P4
(t),

is set as some x∗P4
(s?, t) where s? ∈ S(t) staisfies

s? ∈ argmax
s∈S(t)

{
s +

√
Σ̂2(t)Tx∗P4

(s, t)

}
. (16)

That is, we select the optimal scaling indicator and the corresponding

value as the optimal solution for the series of problems

{P4(s, t)}s∈S(t).
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Solving Each P4(s, t)

At each time t, corresponding to each P4(s, t), we bring in the

problem P5(s, t, c, i) as follows.

P5(s, t, c, i) : max
x(t)∈X

Σ̂2(t)Tx(t)

s.t. (3), (9), (15),
ei∑

e=e1

xe(t) = 0, (17)

where c := [ck]Tk∈K is the capacity vector in (3), e := (l, r) ∈ E and ei
is the i-th edge (l, r) in E . The new constraint (17) is used to set the

first several scheduling decisions (until i) to 0 forcibly. Obviously,
P5(s, t, c, 0) is equal to P4(s, t) because (17) is not functioning when
i = 0.
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Solving Each P5(s, t, c, i) with DP

The optimal solution of P5(s, t, c, i) can be obtained by recursing over

s, c, and i. We use x∗(s, t, c, i) to denote the optimal solution of

P5(s, t, c, i), and use V ∗P5
(s, t, c, i) to denote the corresponding

objective.

If x∗ei+1
(s, t, c, i) = 0, i.e., the (i + 1)-element of x∗(s, t, c, i) is 0,

then (17) is not violated for P5(s, t, c, i + 1). Thus, we have

x∗(s, t, c, i + 1) = x∗(s, t, c, i) (18)

and

V ∗P5
(s, t, c, i + 1) = V ∗P5

(s, t, c, i). (19)

The result means that x∗(s, t, c, i) is also the optimal solution to

P5(s, t, c, i + 1).
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Solving Each P5(s, t, c, i) with DP

If x∗ei+1
(s, t, c, i) = 1, we define matrix A by

A =
[
a(l,r)
k

]K×|E|
.

Then we have

A
(
x∗(s, t, c, i)− ei+1

)
≤ c − A:,i+1, (20)

where ei+1 is the (i + 1)-th standard unit basis. Besides,

Υ̂(t)T
(
x∗(s, t, c, i)− ei+1

)
≥ s − Υ̂ei+1(t) (21)

and

Σ̂2(t)T
(
x∗(s, t, c, i)− ei+1

)
= Σ̂2(t)Tx∗(s, t, c, i)− Σ̂2

ei+1
(t).
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Solving Each P5(s, t, c, i) with DP

Combining the above formula with (20) and (21), we can get the

following evolving optimal substructure:

V ∗P5
(s, t, c, i) =V ∗P5

(
max

{
s − Υ̂ei+1(t), 0

}
, t,

max{c − A:,i+1, 0}, i + 1
)

+ Σ̂2
ei+1

(t). (22)

Thus, for every possible s, c, and i, we can update the solution to

P5(s, t, c, i) by

x∗ei+1
(s, t, c, i) =

{
0 V ∗P5

(s, t, c, i) = V ∗P5
(s, t, c, i + 1)

1 otherwise.

The recursion starts from condition s = 0, c = 0, and i = |E|.
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ESDP

The ESDP algorithm is finally demonstrated below.
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