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The Microservice Deployment Model

There is growing trend towards microservice implementation
models, wherein a complex application is decomposed
into distributed microservices, that each provide
specialized functionality, such as
▶ HTTP connection termination,
▶ key-value serving,
▶ protocol routing,
▶ ad serving, ….

At hyperscale, this deployment model uses standardized
Remote Procedure Call (RPC) interfaces to invoke several
microservices to serve a user’s query.1

1Communication paradigms include RPC, internal communication, and message queue.



TheQuestion

Upon receiving an RPC, a microservice must often perform
operations such as I/O processing, decompression,
deserialization, and decryption, before it can execute its
core functionality (e.g., key-value serving).

Important microservices grow to account for an enormous
installed base of physical hardware. Then we should ask the
question ——

1. Which microservice operations consume the most CPU
cycles?

2. Are there common overheads across microservices that
we might address when designing future hardware?



Always Characterization First!

The authors undertake a comprehensive characterization of
microservices’ CPU overheads on Facebook production systems
serving live traffic.
1. Since microservices must invoke common leaf functions

at the end of a call trace (e.g. memcpy()), the authors first
characterize the leaf function overheads.

2. Then, the authors characterize microservice
functionalities to determine (1) whether diverse
microservices execute common types of operations (e.g.,
compression, serialization, and encryption), and (2) the
overheads they induce.



Characterization Result
Observation
Several microservices (despite their diversity in core logic) spend
only a small fraction of execution time serving core
application logic, squandering signifcant cycles facilitating the
core logic via orchestration work that is not core to the
application logic (e.g., compression, serialization, and I/O
processing).

Figure 1: Breakdown of cycles spent in application logic vs. orchestration
work.



The Analytic Model

Before introducing hardware acceleration, there is a need
for simple analytical models that identify performance
bounds early in the hardware design phase to project gains
from accelerating overheads.

The authors then develop an analytical model for hardware
acceleration, Accelerometer, that identifes performance
bounds to project microservice speedup.
1. Accelerometer considers that the offload operates can be

asynchronous.
2. Accelerometer realistically models microservice speedup for

various hardware acceleration strategies (e.g., on-chip vs.
off-chip).
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Characterization Setup

Production microservice. There are 7 microservices in four
diverse service domains that account for a large portion of
Facebook’s data center fleet.
▶ Web: serve web requests
▶ Feed1 and Feed2: generate new feeds with model inference
▶ Ad1 and Ad2: maintain user-specifc and ad-specifc data and

do ads recommendation via model inference
▶ Cache1 and Cache2: large distributed memory object

caching service



Characterization Setup
Hardware platforms. The authors run Web, Feed1, Feed2,
and Ad1 on the 18-core Skylake, and Ad2, Cache1, and Cache2
on the 20-core Skylake. They study IPC scaling across 3 CPU
generations.

Figure 2: GenA, GenB, and GenC CPU platforms’ attributes.



Characterization Setup

Experimental setup. The authors measure each microservice
in production environment’s default deployment, i.e.,
standalone with no co-runners on bare metal hardware.

There are no cross-service contention or interference effects.
The authors study each system at peak load to stress
performance bottlenecks.



Characterization Setup

Experimental setup (cont’d). The authors first use
Strobelight2 to
▶ collect all function call traces of a microservice (a function

call trace is a call sequence starting with cloning a thread
and ending with a leaf function such as memcpy()), and

▶ measure cycles and instructions spent in each call trace.
Then, they feed the function call traces and their cycle counts
to an internal tool3 that buckets each function call trace into a
microservice functionality category (e.g., I/O, serialization, and
compression); it then aggregates cycles spent in each category.

2See https://github.com/facebookincubator/strobelight.
3Any similar open-sourced tools that we can use?

https://github.com/facebookincubator/strobelight


Leaf Function Characterization
To determine a category’s IPC, the authors determine the
ratio of aggregated instruction and cycle counts for functions
in that category.

The categories of leaf functions are presented in Table 3.

Figure 3: Categorization of leaf functions.



Breakdown of Cycles Spent in Leaf Functions

Figure 4: Breakdown of cycles spent in leaf functions.



Observations

We make several observations from Fig. 4.
▶ Most microservices spend a signifcant fraction of cycles

onmemory functions (e.g., copy and allocation) and
kernel operations.

▶ Cache1 and Cache2 spend more cycles in the kernel as
they frequently incur context switches due to a high
service throughput (invoke scheduler frequently).

▶ ML microservices such as Ad2 and Feed2 spend only up
to 13% of cycles on mathematical operations that
constitute ML inference using Multilayer Perceptrons.4

4ML services can also beneft from optimizations to C libraries. Details will be presented in the following.



Observations (Cont’d)

We make several observations from Fig. 4 (Cont’d).
▶ Cache1 and Cache2 spend signifcant cycles

synchronizing frequent communication between
distinct thread pools.

▶ Cache1 spends 6% of cycles in leaf encryption functions
since it encrypts a high number of QPS.



Leaf Function Characterization in Detail

Many leaf function overheads are signifcant and common
across services. In the following, we present the
characterization of leaf functions in greater detail to identify
acceleration opportunities.
▶ Memory
▶ Kernel
▶ Synchronization
▶ C Libraries



Memory

Figure 5: Breakdown of cycles spent in memory leaf functions.



Memory

Observations.
▶ Memory copies are by far the greatest consumers of

memory cycles.
▶ Google’s services also spend 5% (0.38× 13%) of total feet

cycles on memory copies.
Memory copy optimizations include (1) reducing copies in
network protocol stacks, (2) performing dense memory copies
vis SIMD, (3) moving data in DRAM, (4) minimizing I/O copies
using Intel’s I/O Acceleration Technology (IO AT), (5)
processing in memory, (6) optimizing memory-based software
libraries, and (7) building hardware accelerators.



Memory

Observations (Cont’d). Freeing memory incurs a high
overhead for several microservices, as the free() function
does not take a memory block size parameter, performing
extra work to determine the size class to return the block to.
TCMalloc performs a hash lookup to get the size class. This
hash tends to cache poorly, especially in the TLB, leading to
performance losses.5

Although C++11 ameliorates this problem by allowing
compilers to invoke delete() with a parameter for memory
block size, overheads can still arise from (1) removing pages
faulted in when memory was written to, and (2) merging
neighboring freed blocks to produce a more valuable large free
block.

5A translation lookaside buffer (TLB) is a memory cache that stores the recent translations of virtual memory to physical
memory.



Memory

Memory Copy Origins. We observe diversity in dominant
service functionalities that invoke copies across microservices.

Figure 6: Breakdown of service functionalities that invoke memory copies.

For example, Web can beneft from reducing copies in I/O pre- or
post-processing, whereas Cache2 can gain from fewer copies in
network protocol stacks.



Kernel

Figure 7: Breakdown of cycles spent in various kernel leaf functions: kernel
scheduler, event handling, and network overheads can be high.



Kernel

Observations.
▶ Microservices with a high kernel overhead —— Cache1

and Cache2 —— invoke scheduler functions frequently.
Software/hardware optimizations that reduce scheduler
latency (e.g., intelligent thread switching and
coalescing I/O) might considerably improve Cache
performance.

▶ Cache2 spends signifcant cycles in I/O and network
interactions. Optimized systems that incorporate
kernel-bypass and multi-queue NICs might minimize
Cache2’s kernel overhead.



Synchronization

Microservices such as Cache oversubscribe threads to
improve service throughput. Hence, such microservices
frequently synchronize various thread pools.

Figure 8: Breakdown of CPU cycles spent in synchronization functions:
Cache frequently uses spin locks to avoid thread wakeup delays.



Synchronization

Observations.
▶ Cache, which exhibits a high synchronization overhead,

spends several cycles in spin locks that are typically
deemed performance ineffcient.

▶ However, Cache implements spin locks since it is a
µs-scale microservice, and is hence more prone to
µs-scale performance penalties that can otherwise arise
from thread re-scheduling, wakeups, and context switches.6

6The primary disadvantage of a spinlock is that, while waiting to acquire a lock, it wastes time that might be productively
spent elsewhere. There are two ways to avoid this: (1) Do not acquire the lock. (2) Switch to a different thread while waiting.



C Libraries

Figure 9: Breakdown of CPU cycles spent in C libraries: ML services
perform several vector operations while dealing with large feature vectors.



C Libraries

Observations.
▶ Feed2, Ad1, and Ad2 perform several vector operations as

they deal with large feature vectors.
▶ Web spends signifcant cycles parsing and transforming

strings to process queries from the many URL endpoints
it implements.

▶ Web also performs several hash table look-ups to (1)
maintain query parameters, (2) identify services to
contact, and (3) merge responses.

Obviously, many microservices can beneft from optimizing
vector operations, string computations, and hash table
look-ups.



IPC Scaling for Leaf Functions

Cache1’s per-core IPC scaling for key leaf functions is
depicted in Fig. 10.

Figure 10: Cache1’s IPC scaling across three CPU generations for key leaf
funcs.: kernel IPC is typically low & scales poorly.



IPC Scaling for Leaf Functions

Observations.
▶ Each leaf function type uses less than half of the

theoretical execution bandwidth of a GenC CPU
(theoretical peak IPC of 4.0). As such, simultaneous
multithreading is efective for these microservices and is
enabled in our CPUs.

▶ Kernel IPC is typically low and also scales poorly.
Accelerating the kernel is non-trivial as it is neither small,
nor self-contained, and cannot be easily optimized in
hardware. However, software optimizations that
minimize scheduler, I/O, and network overheads can
improve kernel IPC.

▶ C libraries’ IPC scales well across CPU generations.
▶ Only a small IPC gain from GenB to GenC.



Service Functionality Characterization

Below is the categorization of microservice functionalities.

Each functionality category typically includes several
leaf function categories. For example, despite ML inference
being heavy on math leaf functions, it can also comprise
memory movement and C library leaves.



Service Functionality Characterization

Figure 11: Breakdown of CPU cycles spent in various microservice
functionalities: orchestration overheads are signifcant & fairly common.



Service Functionality Characterization

Observations.
▶ Several microservices face signifcant orchestration

overheads from performing operations that are not core
to the application logic, but instead facilitate application
logic such as compression, I/O, and logging (e.g., 33% of
cycles on ML inference in Feed2).

▶ Several orchestration overheads are common across
microservices; accelerating them can signifcantly improve
the global feet’s performance.

▶ Web spends only 18% of cycles in core web serving logic
(parsing and processing client requests), consuming 23%
of cycles in reading and updating logs.

▶ Ad1, Feed2, Cache1, and Feed1 incur a high thread pool
management overhead. Intelligent thread scheduling
and tuning can help these services.



IPC Scaling for Functionalities

Cache1’s per-core IPC for key microservice functionalities
across 3 CPU generations are depicted in Fig. 12.

Figure 12: Cache1’s IPC scaling across three CPU generations.

▶ I/O IPC remains low across CPU generations. Since
I/O calls primarily invoke kernel functions, the low kernel
IPC (see Fig. 10) contributes to the low I/O IPC.

▶ Application logic IPC also remains low. Since
key-value stores are typically memory intensive, the low
memory IPC (Fig. 10) results in a low key-value store IPC.



Summary of Findings

▶ Significant orchestration overheads. Software and
hardware acceleration for orchestration rather than just
app. logic.

▶ Several common orchestration overheads.
Accelerating common overheads (e.g., compression) can
provide fleet-wide wins.

▶ Poor IPC scaling for several functions. Optimizations
for specific leaf/service categories.

▶ Memory copies & allocations are significant. Dense
copies via SIMD, copying in DRAM, Intel’s I/O AT, DMA
via accelerators, PIM.

▶ Memory frees are computationally expensive. Faster
software libraries, hardware support to remove pages.



Summary of Findings (Cont’d)

▶ High kernel overhead and low IPC. Coalesce I/O,
user-space drivers, in-line accelerators, kernel-bypass.

▶ Logging overheads can dominate. Optimizations to
reduce log size or number of updates.

▶ High compression overhead. Bit-Plane Compression,
Buddy compression, dedicated compression hardware.

▶ Cache synchronizes frequently. Better thread pool
tuning and scheduling, Intel’s TSX, coalesce I/O, vDSO.

▶ High event notification overhead. FRDMA-style
notification, hardware support for notifications, spin vs.
block hybrids.
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Accelerometer

Overheads identifed can be accelerated in the hardware via
CPU optimizations (e.g., specialized hardware instructions) or
custom accelerator devices (e.g., ASICs).
▶ On-chip. On-chip acceleration optimizes components on

the CPU die (e.g., wider SIMD units, Intel’s AES-NI
hardware encryption instruction, and CPU modifcations).
Offoad latencies are typically ns-scale.

▶ Off-chip. Off-chip accelerators are typically contacted
via PCIe and coherent interconnects (e.g., GPUs, smart
NICs, and ASICs). Offoad latencies are ∼ µs-scale.

▶ Remote. Remote accelerators are off-platform devices
contacted via the network. Examples include remote ML
inference units, network switches, remote encryption
units, and remote GPUs. Offload latencies are typically
ms-scale when using commodity ethernet.



System Abstraction

We consider an abstract system with 3 components:
▶ host: a general-purpose CPU
▶ accelerator: a custom hardware to accelerate a kernel
▶ interface: the communication layer between the host

and the accelerator (e.g., a PCIe link)
The interface helps define overheads from dispatching work
to an accelerator (e.g., preparing the kernel for offload, offload
latency, and queuing delays).



System Model
Assumptions.
1. The kernel’s execution time is a function of granularity g,

i.e., the data offload size.
2. The host and accelerator use kernels of the same

complexity.
3. Data offload is unpipelined (i.e., the accelerator requires

the entire block to start operating); it considers the
average latency of such an offload, L.

(Other) Model parameters.
▶ C: Total cycles spent by the host to execute all logic in a

fixed time unit.
▶ α: A constant such that the host spends αC cycles

executing the kernel and (1− α)C cycles executing the
non-kernel logic.

▶ A: The peak achievable accelerator speedup factor.



System Model
Other notations. o0 denotes cycles the host spends in setting
up the kernel prior to a single offload. Q denotes avg. cycles
spent in queuing between host and accelerator for a single
offload. o1 denotes cycles spent in switching threads (due to
context switches and cache pollution) for a single offload.

Figure 13: Example timeline of host & accelerator (explain the colors!).



System Model

Accelerometer models the microservice throughput speedup
and the microservice per-request latency speedup.
▶ To model speedup, Accelerometer identifies how many

fewer host cycles are needed to execute the kernel when
there is acceleration spending fewer host cycles on the
kernel frees up host cycles to do more work, improving
throughput. ▷ C/CS

▶ To model per-request latency reduction, it identifies
the total cycles taken to execute a request when there is
acceleration; spending fewer cycles for a request due to
acceleration reduces per-request latency. ▷ C/CL



Offloading models

The authors consider 3 offloading models in Accelerometer.
▶ Synchronous offloading (Sync). When a host thread

offloads work to an accelerator synchronously, it waits in
the blocked state for the accelerator’s response.

▶ Synchronous offloading with Oversubscription (Sync-OS).
Oversubscription allows a host to schedule an available
thread to process new work, while the thread that
offloaded work blocks awaiting the accelerator’s
response. The host continues to perform useful work
instead of wasting cycles in awaiting the accelerator’s
response.

▶ Asynchronous offloading (Async). The host continues to
process new work without awaiting the accelerator’s
response.



Synchronous Offloading

Consider n synchronous offloads occur (the microservice runs
one thread per core, the host’s core waits for the accelerator’s
response), then we have:

Sync
C
Cs

or
C
CL

=
C

(1− α)C + αC
A + n(o0 + L+ Q)

. (1)

Figure 14: Modeling Sync CS and CL for one offload.



Synchronous Offloading

To determine whether a kernel offload improves speedup, we
consider the offload granularity, g, such that the host spends
Cb cycles per byte of g.

A single offload improves speedup when

Cb × g >
Cb × g

A
+ o0 + L+ Q.7 (2)

Note that Assumption 2 is applied here.

7Use Cb × gβ (allow β ̸= 1) to derive a non-linear kernel’s complexity.



Synchronous Offloading with Oversubscription

With Oversubscription, the host continues to perform (other)
useful work instead of wasting cycles.

Figure 15: Modeling Sync-OS CS and CL for one offload.

The speedup in this case is

Sync-OS
C
CS

=
1

(1− α) + n
C (o0 + L+ Q + 2o1)

, (3)

where o1 is the cycles spent in switching threads (due to
context switches and cache pollution) for a single offload.



Synchronous Offloading with Oversubscription
On the other hand,

Sync-OS
C
CL

=
1

(1− α) + α
A + n

C (o0 + L+ Q + o1)
, (4)

since CL includes cycles spent on the accelerator. The µs-scale
o1 overhead can dominate in µs-scale microservices such as
Cache, making it feasible to incur a throughput gain at the
cost of a per-request latency slowdown.

Obviously, a single offload improves throughput speedup when

Cb × g > o0 + L+ Q + 2o1. (5)

A single offload reduces latency when

Cb × g >
Cb × g

A
+ (o1 + L+ Q + o1). (6)



Asynchronous Offloading

When a host thread offloads work asynchronously, it
continues to process new work without awaiting the
accelerator’s response after issuing the offloading. When the
response arrives, it can be picked up by
▶ the same thread that sent the request,
▶ a distinct thread dedicated to pick up responses.

text

Case I. When a distinct thread picks up the response, the
speedup equation is the same as (3) with only one thread
switching overhead o1. The latency reduction equation
remains the same as (4).



Asynchronous Offloading
Case II. If the response is picked up by the same thread that
sent the request, o1 = 0 since the OS does not switch threads.
The speedup is

Async
C
CS

=
1

(1− α) + n
C (o0 + L+ Q)

. (7)

A single offload improves speedup when

Cb × g > o0 + L+ Q. (8)

Figure 16: Modeling Async CS and CL for one offload.



Asynchronous Offloading

On the other hand, the latency reduction is

Async
C
CL

=
1

(1− α) + α
A + n

C (o0 + L+ Q)
. (9)

A single offload reduces latency when

Cb × g >
Cb × g

A
+ (o0 + L+ Q). (10)



Asynchronous Offloading

In some asynchronous designs, the host does not require the
accelerator’s response for further processing, eliminating o1
(e.g., when a host sends requests to an encryption accelerator,
which then sends encrypted requests to the next microservice).
Hence, the speedup equation remains the same as (7).

Latency reduction depends on whether acceleration is off-chip
or remote since remote accelerator latencies αC

A will not affect
a microservice’s request latency and will instead show up in
the overall application’s e2e latency. The authors define the
Async off-chip per-request latency reduction as (9) and the
remote latency reduction as (7).
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Validation Methodology

A 5 step process for Accelerometer’s validation:
1. Identify offload sizes g that improve speedup.
2. Determine the number of such offloads in one second, n,

and the fraction of cycles they constitute, α.
3. Use Accelerometer to estimate speedup from these n

offloads.
4. Compare Accelerometer estimated speedup with real

production speedup.
5. Present a functionality breakdown for both the

accelerated and unaccelerated microservices to show how
throughput improves.



Measure Real Production Speedup

For each case study, the authors first measure the real
production speedup using an internal tool via A/B testing (by
comparing the throughput of two identical servers that differ
only in terms of whether they accelerate the kernel).



Measure Accelerometer’s Speedup

The authors measure model parameters using (1) tools such as
Strobelight, bpftrace, and bcc-tools, (2) roofline estimates from
device specification sheets, and micro-benchmarks that measure
execution time on the host and the accelerator.
▶ Measure the unaccelerated host’s busy frequency to

calculate C for one second
▶ Use bpftrace to measure g’s size range and the number of

invocations of each granularity
▶ Compute n by aggregating invocations of those offload

sizes that improve speedup
▶ To determine α, the authors first use the service

functionality breakdown (see Fig. 11) to estimate host
cycles spent in the kernel under study. They then use n
and these total host cycles to estimate the fraction of
kernel cycles that must be offloaded, (α · C)



Case Study: AES-NI for Cache1

The authors study encryption in Cache1 with Intel’s AES-NI
instruction (an on-chip optimization).

Cache1 uses a Sync threading design. The authors use AES
from the OpenSSL cryptography library to build
micro-benchmarks to measure L, o0, and A. Since the same
host thread executes the AES-NI instruction, Q = 0. Then,

C
(1− α)C + αC

A + n(o0 + L+ Q)
≈ 15.7% (11)

with C = 2.0× 109 cycles, α = 0.165844, n = 298951, L = 3,
o0 = 10, and A = 6.

Correspondingly, the real production speedup is 14%.
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Model Application
The authors apply the Accelerometer model to project
speedup for the acceleration recommendations derived from
three key common overheads identified by the
characterization: compression, memory copy, and
memory allocation.

For compression, the authors apply existing on-chip and
off-chip compression acceleration with Sync, Sync-OS, and
Async.

Figure 17: Parameters used to model speedup and latency reduction. Here
α = 0.15 because Feed1 spends 15% of cycles in compression.



Apply to Compression

Ideally, for on-chip offloads, the overhead o0 + L can be
negligible. We also assume Q = 0. Then, for compression,
Feed1 can achieve an ideal speedup of 17.6%.

Figure 18: Accelerometer-estimated speedup.

Recommendation. Even though on-chip yields a higher
speedup, there might be value in off-chip acceleration as it is
easier to design than modifying CPUs.
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