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µ-Strongly Convex Function

A function f : C → R is µ-strongly convex if C ⊆ Rn is a
convex set and there exists a constant µ > 0 such that

f
(
αx + (1− α)y

)
≤ αf (x) + (1− α)f (y)

− µα(1− α)

2
‖y − x‖2,∀x, y ∈ C. (1)

Compared with convex, the inequality holds even if a norm
term is subtracted. Thus we can understand how strong the
convexity is.

Note that every norm appears in this slide is Euclidean norm.
Besides, please carefully distinguish the math symbol used is
a scalar or a vector according to context.



L-Smooth Function

A function f : C → R is L-smooth (a.k.a has Lipschitz
continuous gradients) if there exists L > 0 such that

‖∇f (x)−∇f (y)‖ ≤ L‖y − x‖,∀x, y ∈ C. (2)

Informally, smooth is an alias of continuously di�erentiable.
L-smooth function’s gradient is controlled by a constant L
from the upper bound.

An L-smooth (continuously di�erentiable) function is not
necessarily to be convex, and vice versa.



L-Smooth Function (Cont’d)
For L-smooth function f we have

|f (y)− f (x)− 〈∇f (x), y − x〉| ≤ L
2
‖y − x‖2, ∀x, y ∈ C. (3)

The result can be obtained with Taylor expansion. It indicates
that the gap between smooth function f and its linear
approximation is upper bounded by the change of x. The result
indicates that smooth functions are good to be linearized.
Their linearization is easy to compute, and the deviation is not
too large.

If f is both L-smooth and convex, we have: ∀x, y ∈ C,

f (y) ≥ f (x) + 〈∇f (x), y − x〉+
1
2L
‖∇f (y)−∇f (x)‖2. (4)

It indicates that, when f is di�erentiable and convex, we can
use the change of the gradient to bound the linearization gap
from the lower side.



Convex, Strongly Convex, and Smooth
A convex function is lower bounded by its own tangent at all
points. Strongly convex and smooth functions are,
respectively, lower and upper bounded in the rate at which
they may grow, by quadratic functions and cannot, again
respectively, grow too slowly or too fast.

In each figure, the shaded area describes regions the function
curve is permi�ed to pass through. We can find that L-smooth
functions should not be too smooth because its change of
gradient is controlled from the upper bound :-).



Subgradient of Convex Functions
A vector g is a subgradient of a convex function f at x ∈ C if

f (y) ≥ f (x) + 〈g, y − x〉,∀y ∈ C. (5)

∂f (x) is the collection of all the g’s at x. We can find that, the
linearization of f at x with the subgradient g is always smaller
than f (the straight line is below the curve f ).

In this figure, g1 is the subgradient at x1. g2 and g3 are the
subgradients at x2.



Subgradient of Convex Functions (Cont’d)

For convex f , its subgradient exists at every interior point of
its domain.

We only care about the subgradient of convex functions. It’s
useful especially f is continuous but not di�erentiable. If
convex f is di�erentiable, then ∂f (x) is a singleton and the
only element in it is equal to ∇f (x). (For example, in the
figure above, g1 = ∇f (x1).)

Actually, subgradient is an extension of gradient to
non-di�erentiable functions.



Subgradient of µ-Strongly Convex Functions

For µ-strongly convex f we have

f (y) ≥ f (x) + 〈g, y − x〉+
µ

2
‖y − x‖2,∀g ∈ ∂f (x). (6)

It indicates that, the gap between f and its linearization with
g is at least the norm term µ

2 ‖y − x‖2. We can imagine how
strong the convexity is. We further have

f (x)− f (x∗) ≥ µ

2
‖x − x∗‖2,∀x ∈ C. (7)

The result is obvious because 0 ∈ ∂f (x∗) (the critical point).

It’s interesting to compare (6) with (4). (4) holds when f is
smooth and convex while (6) holds when f is strongly convex.
The minimum gap between f and its linearization is thus
controlled by di�erent terms.



Gradient of µ-Strongly Convex Functions

If the µ-strongly convex f is di�erentiable, we have

f (x)− f (x∗) ≤ 1
2µ
‖∇f (x)‖2,∀x ∈ C. (8)

It indicates that the gap between any value of f and the
minimum is upper bounded by the gradient of f at that point.

We also have

〈∇f (x)−∇f (y), x − y〉
‖x − y‖2

≥ µ,∀x, y ∈ C. (9)

It indicates that, to be µ-strongly convex, at any point, the
change of gradient is at least µ.



Monotonicity of Subgradient
If a single-valued mapping f satisfies

〈x − y, f (x)− f (y)〉 ≥ 0,∀x, y ∈ domf ,

then we say f is a monotone function. The subgradient of a
convex function f is monotone, i.e.,

〈x − y, gx − gy〉 ≥ 0,∀x, y ∈ C, (10)

where gx ∈ ∂f (x), gy ∈ ∂f (y). This inequality will be
frequently used when analyzing the convergence of ADMMs.
It will be useful when building the structure

‖obj(xk+1)− obj(x∗)‖ ≤ α‖obj(xk)− obj(x∗)‖.

When f is µ-strongly convex, we have

〈x − y, gx − gy〉 ≥ µ‖x − y‖2,∀x, y ∈ C, (11)

where gx ∈ ∂f (x), gy ∈ ∂f (y). This result is similar to (9) for
gradient of µ-strongly convex functions.



Bregman Distance of Convex Functions

If a convex function φ is di�erentiable, then the associated
Bregman distance is

Dφ(y, x) := φ(y)− φ(x)− 〈∇φ(x), y − x〉. (12)

If a convex function φ is not di�erentiable, then

Dv
φ(y, x) := φ(y)− φ(x)− 〈v, y − x〉, (13)

where v ∈ ∂f (x).



Bregman Distance of Convex Functions (Cont’d)

The Bregman distance is actually the gap between a convex
function f and its linearization:

Thus, when φ is µ-strongly convex, similar to (6), we have

Dφ(y, x) ≥ µ

2
‖y − x‖2. (14)



Closed and Bounded

f is a closed function if its epigraph

epif := {(x, t) | t ≥ f (x)} (15)

is a closed set. Note that a set S is called closed if ∀x ∈ S , its
limit limy→x y is also in S . We care about closed functions
because the limit operator is well defined on them.

A set S is called compact if it is both bounded and closed.



Conjugate Function and its Properties

The conjugate function of f is

f ∗(u) := sup
z∈domf

(
〈z, u〉 − f (z)

)
. (16)

f ∗’s domain is {u | f ∗(u) <∞}.

In the following, we show briefly that f ∗ is always a convex
function whatever f is or not. Note that

∀z ∈ domf , h(u, z) := 〈z, u〉 − f (z)

is a convex function of u, thus epih(·, z) is a convex set. Besides,
f ∗(u) := supz∈domf h(u, z) satisfies that

epif ∗ = ∩z∈domf epih(·, z), (17)

which is also a convex set. Therefore, f ∗(u) is convex.



Conjugate Function and its Properties (Cont’d)
By definition we also have

f (x) + f ∗(y) ≥ 〈x, y〉,∀x, y. (18)

It is called the Fenchel-Young Inequality. Thus we have the
relation between the biconjugate and the original function ——

f ∗∗(x) := sup
y∈domf ∗

(
〈x, y〉 − f ∗(y)

)
(19)

≤ sup
y∈domf ∗

(
〈x, y〉+ f (x)− 〈x, y〉

)
= f (x). (20)

When f is closed and convex, we have f ∗∗(x) = f (x). The
proof can be found at here.

More properties:
I If f is closed and convex, then y ∈ ∂f (x)⇔ x ∈ ∂f ∗(y).
I If f is L-smooth on domf , then f ∗ is L−1-strongly convex

on domf ∗. Vice Versa.
i
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Understand Conjugate Physically

From the definition of conjugate function, we want to know,
at any legal point x, the maximum of yTx − f (x). Suppose
x(y) is the extremum w.r.t. y, then we must have

∇xyTx = ∇xf (x),

i.e., y = f (x(y)). It means the slope of the line yTx is equal to
the slope of the curve f at point x(y). Thus, we can move the
crossing-zero straight line yTx up and down until we find
several points at which the straight line tangents to f .



Understand Conjugate Physically (Cont’d)
From the figure below, we can find that, when y = y2, for the
two extremes x(y2)′ and x(y2)

′′
, x(y2)′ is what we want

because the gap between x(y2)′Ty and f (x(y2)′) is larger.

At any y, we can understand the gap in this way. Then we can
find that, the conjugate function encodes the convex hull of
epif in terms of its supporting hyperplanes. Actually, this also
explains the weak duality (the red curve is always under f ),
which will be introduced later.



Lagrangian Function

The vanilla ADMM is suitable for the problems with a linear
equality constraint. They can be wri�en in the form of:

P1 : min
x∈Rn

f (x), s.t. Ax = b, g(x) ≤ 0, (21)

where A ∈ Rm×n and g(x) := [g1(x), ..., gp(x)]T . We divide
g(x) ≤ 0 into gi1∈I1(x) ≤ 0 and gi2∈I2(x) ≤ 0, where I1 ⊆ [p]
and I2 ⊆ [p] are the set of indices of linear and nonlinear
inequality constraints. The feasible set is denoted by C.

The Lagrangian function is

L(x, u, v) = f (x) + 〈u,Ax − b〉+ 〈v, g(x)〉, (22)

where v ∈ Rp ≥ 0 and u are called the Lagrangian multipliers.



The Dual Function and The Dual Problem

Note f is a function of x. Correspondingly, the dual function

d(u, v) := min
x∈C

L(x, u, v) (23)

is a function of the Lagrangian multipliers (u, v), where
domd := {(u, v) | v ≥ 0, d(u, v) > −∞}. Obviously we have

(Ax? − b, g(x?)) ∈ ∂d(u, v), (24)

where x? ∈ argminx∈C L(x, u, v).

The dual function d is always concave whatever f is convex or
not. The reason is that, L(x, u, v) is a�ine in u and v, and by
definition d(u, v) is the pointwise infimum of a set of a�ine
functions.



The Dual Problem

We define the dual problem as:

max
(u,v)∈domd

d(u, v). (25)

The primal problem and its dual problem are nicely connected
by the Lagrangian function. Specifically, we can find that the
primal and the dual optimal values, f ∗ and d∗, always satisfy

f ∗ ≥ d∗. (26)

This is called the weak duality.



Proof Sketch of the Weak Duality

In the following, we give a simple proof of the weak duality.

We consider a problem with inequality constraints:

min
x

f (x)

s.t. gi(x) ≤ 0, i ∈ [m].

Our target is to find the optimal (maximal) lower bound of f .
Firstly, for any v ∈ R, how to make it be a lower bound of f ?
Actually, if the following equation system on x has no solution,
then we can say v is a lower bound of f :{

f (x) < v
gi(x) ≤ 0, i ∈ [m]

(27)



Proof Sketch of the Weak Duality (Cont’d)

If (27) has a solution, then, for any λ ≥ 0, the following
equation of x

f (x) +
∑
i∈[m]

λigi(x) < v (28)

has a solution. According to the equivalence of contrapositives,
we have: For any λ ≥ 0, if (28) has no solution, then (27) has no
solution. On the other hand, (28) has no solution for any given
λ ≥ 0 i� the following inequality holds for any given λ ≥ 0:

min
x

f (x) +
∑
i∈[m]

λigi(x) ≥ v. (29)



Proof Sketch of the Weak Duality (Cont’d)

Combing the above results, we have: If (29) holds for any given
λ ≥ 0, then v is a lower bound of f . Note that we want to find
the maximal lower bound of f , i.e.

v∗ = max
λ≥0

(
min
x

[ L(x,λ)︷ ︸︸ ︷
f (x) +

∑
i∈[m]

λigi(x)
]

︸ ︷︷ ︸
d(λ):=minx L(x,λ)

)
. (30)

As a infimum of f , we have v∗ = minx∗ f (x∗). Therefore, we
have:

min
x∗

f (x∗) ≥ max
λ∗

d(λ∗). (31)

�



Strong Duality

Strong duality holds if and only if the duality gap is equal to 0,
i.e.,

f ∗ = d∗. (32)

For the primal P1, if there exists an x0 ∈ C such that

Ax0 = b, {gi1(x0) ≤ 0}i1∈I1 , {gi2(x0) < 0}i2∈I2 , (33)

then we say the Slater’s condition holds.

When the Slater’s condition holds, the strong duality holds.



KKT Point and KKT Condition

(x, u, v) is called a Karush-Kuhn-Tucker (KKT) point of P1 if
1. Stationary : 0 ∈ ∂f (x) + ATu +

∑p
i=1 vi∂gi(x).

2. Primal feasibility : Ax = b, gi(x) ≤ 0,∀i ∈ [p].
3. Complementary slackness: vigi(x) = 0,∀i ∈ [p].
4. Dual feasibility : vi ≥ 0,∀i ∈ [p].

The above conditions are called the KKT condition of P1.

They are the optimality condition of P1 when
1. f (x) and gi(x), i ∈ [p] are convex, and
2. P1 satisfies the Slater’s condition.



KKT Point and KKT Condition (Cont’d)

When f (x) and gi(x), i ∈ [p] in P1 are all convex, then
1. every KKT point (x∗, u∗, v∗) is a saddle point of the

Lagrangian function, i.e.,

L(x∗, u, v) ≤ L(x∗, u∗, v∗) ≤ L(x, u∗, v∗), (34)
∀x ∈ C, (u, v) ∈ domd,

and
2. (x∗, u∗, v∗) is a pair of the primal and the dual solutions

with zero dual gap i� it satisfies the KKT condition.



Danskin’s Theorem

Danskin’s Theorem
Let Z be a compact subset of Rm, and let φ : Rn ×Z → R be
continuous and such that φ(·, z) : Rn → R is convex for each
z ∈ Z . Define f : Rn → R by f (x) = maxz∈Z φ(x, z) and

Z(x) =
{
z̄ | φ(x, z̄) = max

z∈Z
φ(x, z)

}
. (35)

f (x) is di�erentiable at x if Z(x) is a singleton. If φ(·, z) is
di�erentiable for all z ∈ Z and∇xφ(x, ·) is continuous on Z for
each x, then ∀x ∈ Rn,

∂f (x) = conv
{
∇xφ(x, z) | z ∈ Z(x)

}
. (36)

Danskin’s Theorem will be used when we calculate the
(sub)gradient of the dual problem —— d(λ) = minx L(λ, x).



Ho�man’s Bound

Consider the non-empty polyhedron

X = {x | Ax = a,Bx ≤ b}. (37)

Then there exists a constant θ, depending only on [AT ,BT ]T ,
such that for any x we have

dist(x,X )2 ≤ θ2
(
‖Ax − a‖2 +

∥∥[Bx − b]+
∥∥2)2, (38)

where [·]+ means the projection to the non-negative orthant,
i.e., [·]+ = max{·, 0}.



Functions Used in Nonconvex Analysis

Proper Function
A function g : Rn → (−∞,+∞] is said to be proper if
dom g 6= ∅, where dom g = {x ∈ Rn | g(x) < +∞}.
We only consider proper functions.

Coercive Function
f is called coercive if lim‖x‖→∞ f (x)→∞.
A coercive function is a function that “grows rapidly” at the
extremes of the space on which it is defined.

Lower Semicontinuous Function
A function g : Rn → (−∞,+∞] is said to be lower
semicontinuous at point x0 if lim infx→x0 g(x) ≥ g(x0).
A function is called lower semicontinuous if the function is
lower semicontinuous at every point of its domain.



More about Semi-Continuity
Semi-continuity is a property of extended real-valued
functions that is weaker than continuity.

An extended real-valued function f is upper (respectively,
lower) semicontinuous at a point x0 if, roughly speaking, the
function values for arguments near x0 are not much higher
(respectively, lower) than f (x0).

x0 x0

(a) (b)

In the figures above, the curve in (a) is lower semicontinuous
while the curve in (b) is upper semicontinuous. Lower
semicontinuous will be required for nonconvex analysis.



Subdi�erential and its Properties

Subdi�erential
Let f be a proper and lower semicontinuous function.
1. For a given x ∈ dom f , the Fréchet subdi�erential of f at x,

wri�en as ∂̂f (x), is the set of all vectors u ∈ Rn, which
satisfies

lim inf
y 6=x,y→x

f (y)− f (x)− 〈u, y − x〉
‖y − x‖

≥ 0. (39)

2. The limiting subdi�erential, or simply the subdi�erential, of
f at x ∈ Rn, wri�en as ∂f (x), is defined through the
following closure process:

∂f (x) =
{
u ∈ Rn |∃xk → x, f (xk)→ f (x),

uk ∈ ∂̂f (xk)→ u, k →∞
}
. (40)



Subdi�erential and its Properties (Cont’d)

Some properties of subdi�erential:
1. In the nonconvex context, Fermat’s rule remains

unchanged: If x ∈ Rn is a local minimizer of g, then
0 ∈ ∂g(x).

2. Let (xk, uk) be a sequence such that xk → x, uk → u,
g(xk)→ g(x), and uk ∈ ∂g(xk), then u ∈ ∂g(x).

3. If f is a continuously di�erentiable function, then

∂(f + g)(x) = ∇f (x) + ∂g(x). (41)



Measurement of Convergence Rate
For a sequence {xk}k that converges to x∗,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= C (42)

must satisfy C ≤ 1. The reason is intuitive. Since xk → x∗,
there must exist infinitely many indices such that
‖xk+1 − x∗‖/‖xk − x∗‖ ≤ 1.

Obviously, the smaller C is, the faster the convergence speed.
Specifically,
1. If C = 1, we say {xk} is sublinear convergent (e.g., { 1k}

and { 1
k2});

2. If C ∈ (0, 1), we say {xk} is linear convergent (e.g., { 1
2k });

3. If C = 0, we say {xk} is superlinear convergent (e.g.,
{ 1
22k
}).



Measurement of Convergence Rate

For a superlinear convergent sequence {xk}, if ∃p > 1 such
that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= C′, (43)

and C′ is a constant, then we say {xk} converges with order p.

Actually, linear convergence is fast enough, and we can find
that the sequence’s curve decreases exponentially. Thus we
also call linear convergence exponential convergence.
Correspondingly, the curve of sublinearly-convergent
sequences decreases polynomially, thus we also call sublinear
convergence polynomial convergence.



Measurement of Convergence Rate

Many optimization algorithms cannot achieve linear
convergence. Thus, we need a more precise way to measure
sublinear convergence. For example, if some algorithm A
satisfies

‖f (xk)− f ∗‖ ≤ ‖x
0 − x∗‖2

2tk
, (44)

then we say: With A, {f (xk)}k converges to f ∗ with the speed
O( 1

k ), where 1
k is the gap between f k and the optimum. If k is

doubled, i.e., the iteration number is doubled, then the gap
shrinks to half.



Measurement of Convergence Rate

Another way to represent the convergence speed is O( 1
ε
). If

we want to limit the gap to ε, i.e., ‖f (xk)− f ∗‖ ≤ ‖x0−x∗‖2
2tk ≤ ε,

then k ≥ ‖x0−x∗‖2
2tε = O(1/ε). In other words, if we want to

reduce the gap in half, we need to double the iteration
number.

With these representations, O(1/k2), i.e., O(1/
√
ε) gap, is

much faster than O(1/k), although both of them are
sublinear.

Similarly, we have
I For linear convergence: O(γ−k), or O(log 1

ε
);

I For quadratic convergence (p = 2): O(γ−2
k
), or

O(log log 1
ε
).



Laplacian Matrix

Denote a graph as G = (V , E), where V and E are the node
and the edge sets, respectively. eij = (i, j) ∈ E indicates that
nodes i and j are connected. Define Vi = {j ∈ V | (i, j) ∈ E}
to be the neighborhood of node i, i.e., the index set of the
nodes that are connected to node i. The Laplacian matrix L of
the graph is defined as

Lij =

 |Vi| if i = j,
−1 if i 6= j and (i, j) ∈ E ,
0 otherwise.

(45)

L has the following properties:
1. L � 0;
2. rank(L) = n− c, where c is the number of connected

components in the graph, and the eigenvector associated
to 0 is 1n.
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Linearly Constrained Convex Problem
We firstly consider the following linearly constrained convex
problem:

P2 : min
x

f (x), s.t. Ax = b, (46)

where f is (i) proper, (ii) closed and (iii) convex. We only care
about proper and closed function. Thus the two adjectives will
be omi�ed for simplification.

With the preliminaries mentioned in the previous section, for
P2 we have the following conclusions:
I Strong duality holds.
I Obtained by Danskin’s Theorem ——

d(λ) := −f ∗(−ATλ)− 〈λ, b〉 is di�erentiable when f is
strictly convex and in this case ∀λ,∇d(λ) = Ax̄ − b,
where x̄ is the minimizer of L(x, λ).

i



Dual Descent

Based on the above analysis, we can have the following
iterations to solve P2:

xk+1 = argmin
x

L(x, λk) (47)

λk+1 = λk + αk(Axk+1 − b), (48)

where (47) is to solve a subproblem on x with the newest λ;
(48) is a (sub)gradient ascent to update λ. αk is the stepsize at
iteration k.

This algorithm is called Dual Descent.



Augmented Lagrangian Method

Note that (48) is a gradient ascent, rather than subgradient
ascent, only when f is strictly convex. However, this greatly
limits the application of Dual Descent because subgradient
ascent is much slower.

Nevertheless, we can use the augmented Lagrangian function
to remedy this:

Lβ(x, λ) := f (x) + 〈λ,Ax − b〉+
β

2
‖Ax − b‖2. (49)

The corresponding dual function is dβ(λ) = minx Lβ(x, λ).



Augmented Lagrangian Method
Because the optimal solution of x∗ satisfies that Ax∗ = b, thus
we have dβ(λ∗) ≤ f (x∗). Moreover, for any λ we have
d(λ) ≤ dβ(λ). Since d(λ∗) = f (x∗), we can conclude that

d(λ∗) = dβ(λ∗) = f (x∗). (50)

In other words, the augmented term does not change the
solution. However, using the augmented Lagrangian function
brings great benefits: For dβ(λ) to be di�erentiable we only
require f to be convex, not strictly convex.

The augmented Lagrangian Method (a.k.a. Method of
Multipliers) has the following iterations:

xk+1 = argmin
x

Lβ(x, λk) (51)

λk+1 = λk + β(Axk+1 − b), (52)

where the stepsize in (52) is fixed as β.



Augmented Lagrangian Method

The augmented Lagrangian method can also be derived from
the dual problem. Recall that the dual problem is
minλ f ∗(−ATλ) + 〈λ, b〉.We use the Proximal Point Method
to solve it:

λk+1 = argmin
λ

(
f ∗(−ATλ) + 〈λ, b〉+

1
2β
‖λ−λk‖2

)
. (53)

The optimality condition is

0 ∈ −A∂f ∗
(
− ATλk+1)+ b +

1
β

(
λk+1 − λk

)
. (54)

(54) means that there exists

xk+1 ∈ ∂f ∗
(
− ATλk+1) (55)

such that 0 = −Axk+1 + b+ 1
β

(
λk+1− λk

)
, which leads to (52).



Augmented Lagrangian Method

On the other hand, with the properties of the conjugate of a
convex function and (55), we have

−ATλk+1 ∈ ∂f (xk+1), (56)

which means

0 ∈ ∂f (xk+1) + ATλk+1

= ∂f (xk+1) + AT(λk + β(Axk+1 − b)
)
. (57)

(57) leads to (51).

Note that we have used two pages to derive the iterations of
the augmented Lagrangian method based on the Proximal
Point method on the dual problem.



Alternating Direction Method of Multipliers

Consider a speicial case of P2, named as P ′2, which has a
separable structure:

P ′2 : min
x,y

f (x) + g(y), s.t. Ax + By = b. (58)

The augmented Lagrangian function is

Lβ(x, y, λ) = f (x) + g(y) + 〈Ax + by − b, λ〉

+
β

2
‖Ax + By − b‖2. (59)

With the augmented Lagrangian method, we need to solve
one subproblem as follows.

(xk+1, yy+1) = argmin
x,y

Lβ(x, y, λ). (60)



Alternating Direction Method of Multipliers
Sometimes, it is much simpler when we solve P ′2 for x and y
separately, which motivates the ADMM [appeared in 1970s].
Di�erent from the augmented Lagrangian method, ADMM
updates x and y in an alternating (or called sequential)
fashion:

xk+1 = argmin
x

Lβ(x, yk, λk) (61)

yk+1 = argmin
y

Lβ(xk+1, y, λk) (62)

λk+1 = λk + β
(
Axk+1 + Byk+1 − b

)
. (63)

We call it ADMM. ADMM is superior to the augmented
Lagrangian method when the x and y subproblems can be
more e�iciently solved.

Dual Descent
−−−−−−−−−→
add aug. term Method of Multipliers

Method of Multipliers
−−−−−−−−−−−−−−→
separate primal vars. ADMM



Convergence of ADMM

ADMM is guaranteed to converge when the objective is
convex.

Theorem II-1 (Existence of Convergence)
Suppose that f (x) and g(y) are convex. When using ADMM to
solve P ′2, we have

f (xk+1)− f (x∗) + g(yk+1)− g(y∗)→ 0, (64)

Axk+1 + byk+1 − b→ 0, (65)

when k → 0.



Sublinear Convergence Rate of ADMM

The following result was firstly proved in 2015.

Theorem II-2 (Sublinear Non-Ergodic Convergence Rate)
Suppose that f (x) and g(y) are convex. When using ADMM to
solve P ′2, we have

−‖λ∗‖

√
C

β(K + 1)
≤ f (xk+1)− f (x∗) + g(yk+1)− g(y∗)

≤ C
K + 1

+
2C√
K + 1

+ ‖λ∗‖

√
C

β(K + 1)
,

(66)

where C = 1
β
‖λ0 − λ∗‖2 + β‖By0 − By∗‖2.



Sublinear Convergence Rate of ADMM
The following result was firstly proved in 2012.

Theorem II-3 (Sublinear Ergodic Convergence Rate)
Suppose that f (x) and g(y) are convex. When using ADMM to
solve P ′2, we have

|f (x̂K+1)− f (x∗) + g(ŷK+1)− g(y∗)|

≤ C
2(K + 1)

+
2
√
C‖λ∗‖√

β(K + 1)
, (67)

‖Ax̂K+1 + BŷK+1 − b‖ ≤ 2
√
C√

β(K + 1)
. (68)

where

x̂K+1 =
1

K + 1

K+1∑
k=1

xk, ŷK+1 =
1

K + 1

K+1∑
k=1

yk. (69)



Linear Convergence Rate of ADMM

The following result was firstly proved in 2016. To achieve
linear convergence rate, more requirements need to be
satisfied.

Theorem II-4 (Linear Convergence Rate with Assumption #1)
Suppose that f (x) is convex and g(y) is µ-strongly convex and
L-smooth. Assume that ∀λ, ‖BTλ‖ ≥ σ‖λ‖, where σ > 0. This
means B should be fully rank. Let β =

√
µL

σ‖B‖ . When using
ADMM to solve P ′2, we have

1
2β
‖λk+1 − λ∗‖2 +

β

2
‖Byk+1 − By∗‖2

≤
(
1 +

1
2

√
µ

L
σ

‖B‖

)−1( 1
2β
‖λk − λ∗‖2 +

β

2
‖Byk − By∗‖2

)
.

(70)



Linear Convergence Rate of ADMM

If the error bound condition is satisfied, even though g is not
strongly convex and smooth, linear convergence rate can still
be achieved. We firstly introduce what is error bound
condition. For P ′2, we define

φ(x, y, λ) :=

∂f (x) + ATλ
∂g(y) + BTλ
Ax + By − b

 . (71)

Correspondingly,

φ−1(s) := {(x, y, λ) | s ∈ φ(x, y, λ)} (72)

Obviously, (x∗, y∗, λ∗) is a KKT point i� 0 ∈ φ(x∗, y∗, λ∗).



Linear Convergence Rate of ADMM

Recall that the distance between a vector and a set/space is
defined as

dist(x,S) := min
y∈S
‖x − y‖. (73)

The distance relative to a matrix is defined as

distH(x,S) := min
y∈S
‖x − y‖H

= min
y∈S

√
(x − y)TH(x − y). (74)



Linear Convergence Rate of ADMM

Definition II-1 (Error Bound Condition)
The set-value mapping φ(w) satisfies the (global) error bound
condition, if there exists a constant κ > 0 such that, ∀w,

distH(w, φ−1(0)) ≤ κdist(0, φ(w)), (75)

where

H :=

0 0 0
0 βBTB 0
0 0 1

β
I

 . (76)

The LHS of (75) is the matrix-relevant distance between any
solution w = (x, y, λ) and the KKT point set. The RHS is the
distance between optimal (sub)gradient (i.e., 0) at the critical
point and the (sub)gradients at w.



Linear Convergence Rate of ADMM

The following result was firstly proved in 2018.

Theorem II-5 (Linear Convergence Rate with Assumption #2)
Suppose that f (x) and g(y) are convex and φ(w) satisfies the
error bound condition (75). When using ADMM to solve P ′2, we
have

dist2H((xk+1, yk+1, λk+1), φ−1(0))

≤
[
1 +

1
κ2(β‖A‖2 + 1

β
)

]−1
dist2H((xk, yk, λk), φ−1(0)). (77)



Bregman ADMM

Note that in ADMM, (61) and (62) are time-consuming. We
can use linearization technique to make the subproblems
compuatationally e�icient:

xk+1 = argmin
x

(
Lβ(x, yk, λk) + Dφ(x, xk)

)
(78)

yk+1 = argmin
y

(
Lβ(xk+1, y, λk) + DΨ (y, yk)

)
(79)

λk+1 = λk + β
(
Axk+1 + Byk+1 − b

)
. (80)

The above algorithm is called Bregman ADMM. Wherein, Dφ
and DΨ are Bregman distance w.r.t. φ and Ψ , respectively.

Bregman ADMM appeared at 2002, and it was in-depth
studied in 2011 ∼ 2015.



Sublinear Convergence Rate of Bregman ADMM
Bregman ADMM is easily computable with linearization, but
with the cost of more computation times / iterations. Even
though, it can still achieve sublinear convergence rate without
any additional requirements.

Theorem II-6 (Sublinear Convergence Rate)
Suppose that f (x) and g(y) are convex. When using Bregman
ADMM to solve P ′2, we have

|f (x̂K+1) + g(ŷK+1)− f (x∗)− g(y∗)|

≤ D
2(K + 1)

+
2
√
D‖λ∗‖√

β(K + 1)
, (81)

‖Ax̂K+1 + BŷK+1 − b‖ ≤ 2
√
D√

β(K + 1)
. (82)

x̂K+1 and ŷK+1 are defined in (69), and D is a constant relative to
the element-wise gap between (x0, y0, λ0) and (x∗, y∗, λ∗).



LADMM-1

When we set di�erent φ and Ψ , di�erent ADMMs can be
obtained. If we set

φ(x) =
β‖A‖2

2
‖x − u1‖2 −

β

2
‖Ax − u2‖2 (83)

Ψ(y) =
β‖B‖2

2
‖y − v1‖2 −

β

2
‖By − v2‖2. (84)

u1, u2, v1, and v2 are constants. Then (78) reduces to

xk+1 = argmin
x

(
f (x) + g(yk) + 〈λk,Ax + Byk − b〉

+A
(β
2
‖Ax + Byk − b‖2

)
+
β‖A‖2

2
‖x − xk‖2

)
, (85)



LADMM-1

Then (79) reduces to (cont’d)

yk+1 = argmin
y

(
f (xk+1) + g(y) + 〈λk,Axk+1 + By − b〉

+A
(β
2
‖Axk+1 + By − b‖2

)
+
β‖B‖2

2
‖y − yk‖2

)
, (86)

while (80) keeps unchanged.



LADMM-1

In (85), A
(
β
2 ‖Ax + Byk − b‖2

)
is the linear approximation of

β
2 ‖Ax + Byk − b‖2 at xk. It has the form:

β

2
‖Axk + Byk − b‖2︸ ︷︷ ︸

h(xk)

+ β〈AT (Axk + Byk − b), x − xk〉︸ ︷︷ ︸
〈∇h(xk),x−xk〉

. (87)

In (86), A
(
β
2 ‖Ax

k+1 + By − b‖2
)
is the linear approximation

of β2 ‖Ax
k+1 + By − b‖2 at yk. It has the form:

β

2
‖Axk+1 + Byk − b‖2 + β〈BT (Axk+1 + Byk − b), y − yk〉.

(88)

This variant of Bregman ADMM, i.e., (85), (86), and (80), is
called LADMM-1.



LADMM-2

Obviously, LADMM-1 is good to use when the proximal
mappings of f and g, i.e., argminx

(
f (x) + β‖A‖2

2 ‖x − xk‖2
)

and argminy

(
g(y) + β‖B‖2

2 ‖y − yk‖2
)
are easily to compute.

When the proximal terms are not easily computable (note that
we still require them to be convex), but f and g are Lf -smooth
and Lg-smooth, respectively, we may choose

φ(x) =
Lf + β‖A‖2

2
‖x − u1‖2 −

β

2
‖Ax − u2‖2−f (x) (89)

Ψ(y) =
Lg + β‖B‖2

2
‖y − v1‖2 −

β

2
‖By − v2‖2−g(y). (90)

Note that f and g are subtracted. It means they are also
approximated.



LADMM-2

Specifically, with (89) and (90), we have

xk+1 = argmin
x

(
g(yk) + 〈λk,Ax + Byk − b〉

+A
(
f (x) +

β

2
‖Ax + Byk − b‖2

)
+

Lf + β‖A‖2

2
‖x − xk‖2

)
, (91)

where A(f (x) + β
2 ‖Ax + Byk − b‖2) is the linear

approximation of f (x) + β
2 ‖Ax + Byk − b‖2. It has the form:

f (xk) + 〈∇f (xk), x − xk〉

+
β

2
‖Axk + Byk − b‖2 + β〈AT (Axk + Byk − b, x − xk)〉.



LADMM-2
With (89) and (90), we further have (cont’d)

yk+1 = argmin
y

(
f (xk+1) + 〈λk,Axk+1 + By − b〉

+A
(
g(y) +

β

2
‖Axk+1 + By − b‖2

)
+

Lg + β‖B‖2

2
‖y − yk‖2

)
, (92)

where A(g(y) + β
2 ‖Ax

k+1 + By − b‖2) is the linear
approximation of g(y) + β

2 ‖Ax
k+1 + By − b‖2. It has the form:

g(yk) + 〈∇g(yk), y − yk〉

+
β

2
‖Axk+1 + Byk − b‖2 + β〈BT (Axk+1 + Byk − b), y − yk〉.

This variant of Bregman ADMM, i.e., (91), (92), and (80), is
called LADMM-2.



Linear Convergence Rate of Bregman ADMM

If we add more requirements on convexity, linear convergence
rate of Bregman ADMM can be achieved. Specifically,
1. If f is generally convex, but g is µg-strongly convex

and Lg-smooth, then we linearize the second subproblem
and the augmented term, i.e., φ ≡ 0.

2. If f is µf -strongly convex, and g is µg-strongly convex
and Lg-smooth, then we linearize both subproblems and
the augmented term (as what LADMM-2 does).

For the above two scenarios, linear convergence rate can be
achieved by Bregman ADMM.



Comparison Between ADMM and LADMMs

Linear complexity comparisons between ADMM and two
variants of linearized ADMM, for solving P ′2:

Method Rate Linearization

ADMM O(
√

Lg
µg

‖B‖2
σ

log 1
ε
) None

LADMM-1 O((
√

Lg
µg

‖B‖2
σ

+
‖B‖22
σ2 ) log 1

ε
) On aug.

LADMM-2 O((
‖B‖22
σ2 +

Lg
µg

) log 1
ε
) On f , g and aug.

i

Note that all the three complexities in this table are linear
(with smooth and strongly convex assumptions). However,
LADMMs is slower than ADMM. We have explained this ——
Linearized ADMM is easily computable with linearization, but
with the cost of more computation times / iterations.



Nesterov’s Acceleration Techniques

Still for P ′2, if f or g is smooth, or they have a smooth part,
then we can use Nesterov’s acceleration techniques to
accelerate the LADMMs [proposed in 2015, SIAM].

We firstly consider the following assumption.

Assumption II-1
In P ′2, both f and g are convex and g is Lg-smooth.
i
In this case, we can linearize g at the auxiliary variable vk in
the y update step.



Acc-LADMM-1

Specifically we have:

xk+1 = argmin
x

Lβ(x, yk, λk), (same as (61)) (93)

vk = θkyk + (1− θk)ỹk, (94)

yk+1 = argmin
y

(
f (xk+1) + 〈λk,Axk+1 + By − b〉

+A1

(
g(y)

)
+A2

(β
2
‖Axk+1 + By − b‖2

)
+

Lgθk + β‖B‖2

2
‖y − yk‖2

)
, (95)

where A1(g(y)) := g(vk) + 〈∇g(vk), y − vk〉 is the
linearization approximation at vk; A2(

β
2 ‖Ax

k+1 + By − b‖2) is
the linear approximation at yk, which is the same as (88).



Acc-LADMM-1

Specifically we have (cont’d):

x̃k+1 = θkxk+1 + (1− θk)x̃k, (96)

ỹk+1 = θkyk+1 + (1− θk)ỹk, (97)

λk+1 = λk + β
(
Axk+1 + Byk+1 − b

)
. (unchanged) (98)

(93) ∼ (98) are called Acc-LADMM-1. It linearizes g at the
auxiliary variable vk in the y update step while keeping the
calculate of x unchanged.



Compare Acc-LADMM-1 with LADMM-2

It’s interesting to compare (95) with (92). The main di�erence
is that, in Acc-LADMM-1, the linearization of g is taken at the
auxiliary variable vk, rather than yk, which is introduced by
the Nesterov’s acceleration techniques.

Although not easy, but we can prove that Acc-LADMM-1 is
still sublinear convergent: O( 1

K +
Lg
K2 ). Acc-LADMM-1 is faster

than LADMM-2, and it does not require f to be smooth.



Acc-LADMM-2
If both f and g are smooth, or both of them have a smooth
part, we can linearize both of them [proposed in 2019]. Firstly,
we formalize our assumption:

Assumption II-2
In P ′2, both f and g are convex and they have composite
structures:

f (x) = f1(x) + f2(x), g(y) = g1(y) + g2(y), (99)

where both f2 and g2 are L-smooth.
We give the following new iterations:

uk = xk +
θk(1− θk−1)

θk−1
(xk − xk−1), (100)

vk = yk +
θk(1− θk−1)

θk−1
(yk − yk−1), (101)



Acc-LADMM-2

We give the following new iterations (cont’d):

xk+1 = argmin
x

(
g(vk) + 〈λk,Ax + Bvk − b〉

+ f1(x) +A
(
f2(x) +

β

2θk
‖Ax + Bvk − b‖2

)
+

L + β
θk
‖A‖2

2
‖x − uk‖2

)
, (102)

where

A
(
f2(x) +

β

2θk
‖Ax + Bvk − b‖2

)
= f2(uk) + 〈∇f2(uk), x − uk〉

+
β

2θk
‖Auk + Bvk − b‖2 +

β

θk
〈AT (Auk + Bvk − b), x − uk〉.

(103)



Acc-LADMM-2
We give the following new iterations (cont’d):

yk+1 = argmin
y

(
f (uk+1) + 〈λk,Auk+1 + By − b〉

+ g1(y) +A
(
g2(y) +

β

2θk
‖Auk+1 + By − b‖2

)
+

L + β
θk
‖B‖2

2
‖y − vk‖2

)
, (104)

where

A
(
g2(y) +

β

2θk
‖Auk+1 + By − b‖2

)
= g2(vk)

+ 〈∇g2(vk), y − vk〉+
β

2θk
‖Auk+1 + Bvk − b‖2

+
β

θk
〈BT (Auk+1 + Bvk − b), y − vk〉. (105)



Acc-LADMM-2

We give the following new iterations (cont’d):

λk+1 = λk + βτ
(
Axk+1 + Byk+1 − b

)
, (106)

where βτ is the stepsize. We call (100), (101), (102), (104), and
(106) Acc-LADMM-2. Obviously, when ∀k, θk ≡ 1 and τ = 1,
Acc-LADMM-2 reduces to non-accelerated LADMMs.

With the smooth requirements defined in Assumption II-2,
Acc-LADMM-2 converges faster than Acc-LADMM-1. But its
convergence rate is still sublinear.



Acc-LADMM-3

Recall that Acc-LADMM-1 works under Assumption II-1,
which requires f and g to be convex and g to be Lg-smooth.
Wherein, (95) is the acceleration of (92). If we further assume
that g is µg-strongly convex, then (95) can be further
accelerated.

Specifically, we have

vk+1 = θyk + (1− θ)ỹk, (107)

xk+1 = argmin
x

(
f (x) + 〈λk,Ax + Byk − b〉

+
βθ

2
‖Ax + Byk − b‖2

)
. (108)



Acc-LADMM-3

We further have (cont’d):

yk+1 = argmin
y

(
〈∇g(vk), y〉+ 〈λk,By〉

+ βθ〈BT (Axk+1 + Byk − b), y〉

+
1
2

( θ
α

+ µg

)∥∥∥y − 1
θ
α

+ µg

( θ
α
yk + µgvk

)∥∥∥2). (109)

From (109) we can find that, g(y) is linearly approximated at
vk while βθ

2 ‖Ax + Byk − b‖2 is approximated at yk.

For the proximal term, we wants y to approach the weighted
average of yk and vk, where their weights are θ

α
and µg ,

respectively.



Acc-LADMM-3

We further have (cont’d):

x̃k+1 = θxk+1 + (1− θ)x̃k, (110)

ỹk+1 = θyk+1 + (1− θ)ỹk, (111)

λk+1 = λk + βθ
(
Axk+1 + Byk+1 − b

)
. (112)

This method, (107) ∼ (112), is called Acc-LADMM-3, which
was proposed in 2020.

Remember that Acc-LADMM-3 works fine under the
assumption that, f is convex, and g is Lg-smooth and
µg-strongly convex.



Comparison of Complexities

For solving P ′2, LADMM-2 is slower than the vanilla ADMM,
but, as we have analyzed, it is more easily computable.
Acc-LADMM-3 is both easily computable and fast, although is
has strong convexity requirement on g.

Method Rate

ADMM O(
√

Lg
µg

‖B‖2
σ

log 1
ε
)

LADMM-2 O((
‖B‖22
σ2 +

Lg
µg

) log 1
ε
)

Acc-LADMM-3 O(
√

Lg
µg

‖B‖2
σ

log 1
ε
)

i
Note that all the three complexities in this table are linear.
However, Acc-LADMM-3 is able to overcome the slow
convergence of LADMM-2, which is the same fast as ADMM.



Conclusion

Time to make a conclusion.

In the pages till now, we try to solve a linearly constrained
problem P ′2, located at (58).
I We firstly proposed a Dual Descent method, for P2, which

updates the primal and dual variables alternatively.
However, it works fine only when f is strictly convex. To
remove this restrict we propose the augmented Lagrangian
method, which adds an augmented term to the
Lagrangian function to make its curve upward swinging.

I Further, based on the augmented Lagrangian method, if
the objective of P2 is separatable, i.e., in the shape of P ′2,
then we can update the primal variables x and y
alternatively. This is ADMM.



Conclusion (Cont’d)

I For ADMM, to achieve a sublinear convergence rate, f
and g are required to be convex. This is the basic
requirement for ADMM to convergent. Nevertheless, if
more requirements can be met, for example,
1. g is further µ-strongly convex and L-smooth, or
2. the erorr bound condition (75) is satisfied,

then linear convergence rate can be achieved.
I ADMM is criticized for its time-consuming computation

on subproblems (61) and (62). To speed up the
computation, linearization is introduced. This is Bregman
ADMM, which is easily computable because part of the
augmented Lagrangian function is linearized. However,
its speed up is at the cost of more computation iterations.
The reason behind is intuitive: Minimizing the
linearization of the objective cannot completely replace the
objective a�er all.



Conclusion (Cont’d)

I If the objective is smooth, Bregman ADMM works more
e�iciently. This is intuitive, because smooth functions can
be be�er approximated by their linearizations. We
introduce two di�erent variant of Bregman ADMM,
LADMM-1 and LADMM-2. They linearize di�erent parts
of the augmented Lagrangian function.

I For Bregman ADMM, with general assumptions, such as
the objective is convex and smooth, sublinear
convergence rate can be achieved. If strong convexity
satisfies, linear convergence can be achieved.



Conclusion (Cont’d)

I Another goodness of smooth is that, the update of primal
variables can be accelerated with Nesterov’s acceleration
techniques. Combing this technique with linearization,
we have Acc-LADMM-1, Acc-LADMM-2, and
Acc-LADMM-3.

I Acc-LADMM-1 accelerates the calculation of yk by
introducing the auxiliary variable vk. Acc-LADMM-2
accelerates both the calculation of xk and yk. Thus
Acc-LADMM-2 is faster than Acc-LADMM-1.

I If g is further strong convex, the calculation of yk can be
further accelerated. This is want Acc-LADMM-3 does.
Correspondingly, Acc-ALDMM-3 is linear convergent.



Multi-Block Problems

P ′2 is a two-block problem, where the objective can be
separated into two disjoint functions, f (x) and g(y). Now we
consider the multi-block version, P3.

P3 : min
{xi}i∈[m]

f (x) ≡
m∑
i=1

fi(xi), s.t.
m∑
i=1

Aixi = b. (113)

Wherein ∀i ∈ [m], xi ∈ Rdi ,Ai ∈ Rn×di , and b ∈ Rn. We define
x = [xT1 , ..., x

T
m]T ∈ R

∑m
i=1 di and A = [A1, ...,Am] ∈ Rn×

∑m
i=1 di .

Correspondingly, P3 can be represented as

P3 : min
x

f (x), s.t. Ax = b. (114)



ADMM for Multi-Block Problems

The vanilla ADMM can solve P3. We name it MB-ADMM:

∀i ∈ [m] in turn :

x̃k+1
i = argmin

xi
Lβ(x̃k+1

1 , ..., x̃k+1
i−1 , xi, x

k
i+1, ..., x

k
m, λ

k), (115)

λk+1 = λk + β(Ax̃k+1 − b), (116)

xk+1 = x̃k+1,∀i ∈ [m]. (117)

where

Lβ(x, λ) = f (x) + 〈λ,Ax − b〉+
β

2
‖Ax − b‖2. (118)

x̃k is introduced for the following algorithms. In MB-ADMM,
∀k, x̃k ≡ xk. Unfortunately, it is proved that ADMM-MB
might not converge. Thus, we need to devise new technique
that at least guarantee the convergence.



ADMM-GBS

Although not easy, but based on the optimality condition of
primal update, i.e.,

0 ∈ ∂xiLβ
(
{x̃k+1

i1 }i1=1,...,i−1, xi, {xki2}i2=i+1,...,m, λ
k), (119)

and the monotone of subgradient, i.e., (10), we have

f (x̃k+1)− f (x∗) + 〈λ∗,Ax̃k+1 − b〉

≤ 1
2β

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
− β

2
‖x̃k+1 − xk‖2H

− β(xk − x∗)TM(x̃k+1 − x∗). (120)

Actually, this intermediate result is frequently used in
ADMMs’ convergence analysis.



ADMM-GBS

In (120),

M =


AT

1A1 0 · · · 0
AT

2A1 AT
2A2 · · · 0

...
...

. . . 0
AT

mA1 AT
mA2 · · · AT

mAm

 (121)

is a lower triangular matrix, and

H ==


AT

1A1 0 · · · 0
0 AT

2A2 · · · 0
...

...
. . . 0

0 0 · · · AT
mAm

 (122)

is a diagonal matrix.



ADMM-GBS

To build a convergence analysis, we hope that the RHS of
(120) has the shape

1
2β

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+
β

2

(
‖xk − x∗‖2G − ‖xk+1 − x∗‖2G

)
, (123)

If we let

xk+1 = xk + D(x̃k+1 − xk), (124)

which works as correcting xk+1 from the predicted x̃k+1,
and bring it into (123), we have

DTGD = H , GD = M. (125)



ADMM-GBS

Assume that all Ai’s are full column rank, then M and H are
invertible. Combing (120), (124), and (125), we have

xk+1 = xk + M−TH(x̃k+1 − xk). (126)

Note that the matrix-vector multiplication in (126) can be
calculated e�iciently by Gaussian back substitution.

In this case, the iterations (115), (116), and (126), which are
designed to solve P3, are called ADMM-GBS [2012, SIAM].
ADMM-GBS is able to achieve O(1/K) convergence rate.



ADMM-PC

Is ADMM-GBS simple enough? Yes, but it is
computation-intensive. The reason is that in every iteration,
by (126), we have to solve m linear systems. Pay a�ention to
(115), actually, to solve it, we only need Aixi, rather than xi. In
other words, we don’t need to compute xi explicitly.

Denote

L =


I 0 · · · 0
I I · · · 0
...

...
. . . 0

I I · · · I

 , P =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . . 0

0 0 · · · Am

 . (127)

Then

M = PTLP, H = PTP. (128)



ADMM-PC

Similarly, we hope that the RHS of (120) has the shape

1
2β

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+
β

2

(
‖Pxk − Px∗‖2G′ − ‖Pxk+1 − Px∗‖2G′

)
, (129)

If we let

Pxk+1 = Pxk + D′(Px̃k+1 − Pxk), (130)

then we have

D′ = L−T , G′ = LLT . (131)



ADMM-PC
In this case, (130) is equal to

A1xk+1
1

A2xk+1
2
...

Am−1xk+1
m−1

Amxk+1
m

 =


A1x̃k+1

1 + A2xk2 − A2x̃k+1
2

A2x̃k+1
2 + A3xk3 − A3x̃k+1

3
...

Am−1x̃k+1
m−1 + Amxkm − Amx̃k+1

m
Amx̃k+1

m

 . (132)

In other words, we can obtain Aixk+1
i directly without solving

linear systems.

This looks good. Remember that at the final iteration K , we
need to recover xKi from x̃Ki back:

xKi = A−1i

(
Aix̃Ki + Ai+1xK−1i+1 − Ai+1x̃Ki+1

)
, i < m,

xKi = A−1i Aix̃Ki , i = m,

which requires all Ai’s are full column rank.



ADMM-PC
Based on this, we present ADMM-PC [proposed in 2021]. In
the following formulas, ξi is used to replace Aixi.

∀i ∈ [m] in turn :

x̃k+1
i = argmin

xi
L̃i(x̃k+1

1 , ..., x̃k+1
i−1 , xi, ξ

k
i+1, ..., ξ

k
m, λ

k), (133)

λk+1 = λk + β(Ax̃k+1 − b), (134)

ξk+1 = ξk + L−T (Px̃k+1 − ξk),∀i ∈ [m], (135)

where L̃i(x̃1, ..., x̃i−1, xi, ξi+1, ..., ξm, λ) is defined as
i−1∑
j=1

fj(x̃j) + fi(xi) + 〈λ,
i−1∑
j=1

Ajx̃j + Aixi +
m∑

j=i+1

ξj − b〉

+
β

2
‖

i−1∑
j=1

Ajx̃j + Aixi +
m∑

j=i+1

ξj − b‖2, (136)

and ξ = (ξT1 , ..., ξ
T
m)T .



Drawbacks of Prediction-Corrections

ADMM-PC also has a O(1/K) convergence rate but compared
with ADMM-GBS, the coe�icient is smaller.

ADMM-GBS and ADMM-PC have the following drawbacks:
1. They need to maintain two groups of variables, the

predicted and the corrected, thus increasing the memory
cost (at least doubled)

2. Neither xki (ADMM-GBS) nor ξk (ADMM-PC) could be
sparse or low-rank, even for sparse or low-rank problems.
Thus the memory consumption can be more



LADMM-PS
If we could remove the memory-intensive
prediction-correction procedures and update all xi’s
parallelly, then the convergence can be speed up. To do this,
let’s put our focus back to the linearization techniques.

Based on the Bregman ADMM (78) or (79), for P3, when we set

φ(x) :=
β

2
‖x‖2L −

β

2
‖Ax‖2, (137)

The update of primal variables are:

xk+1 = argmin
x

(
f (x) + 〈λk,Ax − b〉+ β〈AT (Ax − b), x − xk〉

+
β

2
‖x − xk‖2L

)
, (138)

which coincides with (85) of LADMM-1.



LADMM-PS
Note that in (138), L = diag(L1Id1 , ...., LmIdm), and the Bregman
distance is meaningful only when φ is convex. Because

φ(x) =
β

2

m∑
i=1

xTi (LiIdi)xi −
β

2
‖

m∑
i=1

Aixi‖2

≥
m∑
i=1

xTi (LiIdi)xi −
β

2
m

m∑
i=1

‖Aixi‖2

≥
m∑
i=1

xTi (LiIdi)xi −
β

2
m

m∑
i=1

‖Ai‖2‖xi‖2

=
β

2

m∑
i=1

xTi (Li −m‖Ai‖2)Idixi, (139)

Thus, to guarantee the convexity of φ, we should let

Li ≥ m‖Ai‖2,∀i ∈ [m]. (140)



LADMM-PS

Thus, with L satisfying (140), (138) is separable for each xi:

xk+1
i = argmin

xi

(
fi(xi) + 〈λk,Aixi〉+ β〈AT

i (Axk − b), xi〉

+
βLi
2
‖xi − xki ‖2

)
, (141)

which can be solved in parallel for each i ∈ [m]. The update of
the dual variables is not changed:

λk+1 = λk + β(Axk+1 − b). (142)

We call (141) and (142) LADMM-PS (Linearized ADMM with
Parallel Spli�ing) [2013, 2015]. The same as LADMM-1,
LADMM-PS can achieve sublinear and linear convergence rate
under certain conditions.



LADMM-SPU

LADMM-PS to P3 is similar to Method of Multipliers to P ′2.
However, as we have analyzed, ADMM is faster than Method
of Multipliers, i.e., the alternating update of primal variables is
faster than update the primal variables in parallel. This
inspires us to combine the alternating update and
LADMM-PS for multi-block problems.

Specifically, we can divide the m blocks in P3 into two
partitions:

1, ...,m′ and m′ + 1, ...,m,

and then update the two partitions in serial, while updating
the blocks in the same partition in parallel. This method is
called LADMM-SPU (Linearized ADMM with the Serial and
the Parallel Update Orders) [TPAMI, 2018].



LADMM-SPU
LADMM-SPU has the following iterations:

xk+1
i = argmin

xi

(
fi(xi) + 〈λk,Aixi〉+ β〈AT

i (Axk − b), xi〉

+
m′β‖Ai‖2

2
‖xi − xki ‖2

)
,∀i ∈ [1,m′] in parallel,

xk+1
j = argmin

xj

(
fj(xj) + 〈λk,Ajxj〉

+ β〈AT
j

( m′∑
t=1

Atxk+1
t +

m∑
t=m′+1

Atxkt − b
)
, xj〉

+
(m−m′)β‖Aj‖2

2
‖xj − xkj ‖2

)
,∀j ∈ [m′ + 1,m] in parallel.

In above formulas, Li is set as m′‖Ai‖2 while Lj is set as
(m−m′)‖Aj‖2. LADMM-SPU is also a variant of Bregman
ADMM. But it runs faster than LADMM-PS.



Conclusion

Time to make a conclusion.

So far, we have discussed several algorithms for solving the
multi-block problem P3, defined in (113).
I The vanilla ADMM, i.e., MB-ADMM, is not guaranteed to

converge. To make the ADMM-like procedure converges,
we try to find suitable D and G such that

f (x̃k+1)− f (x∗) + 〈λ∗,Ax̃k+1 − b〉

≤ 1
2β

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
+
β

2

(
‖Pxk − Px∗‖2G′ − ‖Pxk+1 − Px∗‖2G′

)
.

Then we get ADMM-GBS.



Conclusion (Cont’d)

I ADMM-GBS is criticized for its intensive computation
—— It needs to solve m linear systems in every single
iteration. When m is large, it could be very slow.
Fortunately, we can replace Aixi by ξi and remove the
matrix-vector multiplication. Then the computation can
be greatly reduced. This is ADMM-PC.

I ADMM-PC is still not good enough. Actually,
ADMM-GBS and ADMM-PC have the following
drawbacks:
1. They need to maintain two groups of variables, the predicted

and the corrected, thus increasing the memory cost (at least
doubled)

2. Neither xki (ADMM-GBS) nor ξk (ADMM-PC) could be sparse or
low-rank, even for sparse or low-rank problems. Thus the
memory consumption can be more



Conclusion (Cont’d)

I Thus, we have LADMM-PS, which removes the
memory-intensive prediction-correction procedures and
update all xi’s in parallel.

I LADMM-PS to P3 is similar to Method of Multipliers to
P ′2. However, as we have analyzed, ADMM is faster than
Method of Multipliers, i.e., the alternating update of
primal variables is faster than update the primal variables
in parallel. This inspires us to combine the alternating
update and LADMM-PS in multi-block problems.

I Then we get LADMM-SPU. It devides the m xi’s into two
partitions. Each partition is updated in serial while the
variables in the same partition are updated in parallel.



Conclusion (Cont’d)

So far, we have discussed several ADMMs for determinisitc
linear convex problems. The problem must
1. has a (several) linear constraint (constraints), and
2. does not allowed to have nonlinear constraints

(inequality constraints).
3. Further, the objective must be convex.

These conditions must be met for the convergence of ADMMs.
If strongly convex or smooth can be met, linear convergence
could be achieved.

It’s interesting to mention that, all the ADMMs we introduced
so far can be derived from the perspective of Variational
Inequality. More information can be found from Sec. 3.6 of
the ADMM book.

https://link.springer.com/book/10.1007/978-981-16-9840-8
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Nonlinear Convex Problems
Now we consider the following problem P4, which has two
separable blocks and nonlinear constraints.

P4 : min
x,y

f (x) + g(y)

s.t. h0(x) ≤ 0
p0(y) ≤ 0

Ax + By = b.

h0(x) and p0(y) are scalars, i.e., h0(x) ∈ R, p0(y) ∈ R. In P4,
we require f , g, h0, and p0 to be convex. By introducing
h(x) = max{0, h0(x)} and p(y) = max{0, p0(y)}, we can have
the following problem instead:

P ′4 : min
x,y

f (x) + g(y)

s.t. h(x) = 0, p(y) = 0, Ax + By = b.



ADMM-NC

Obviously, P ′4 is solvable by ADMMs. The augmented
Lagrangian function is

Lρ1,ρ2,β(x, y, γ, τ, λ)

= f (x) + g(y) + γh(x) +
ρ1
2
h2(x) + τg(y) +

ρ2
2
p2(y)

+〈λ,Ax + By − b〉+
β

2
‖Ax + By − b‖2. (143)



ADMM-NC

Correspondingly, we have the following iterations:

xk+1 = argmin
x

Lρ1,ρ2,β(x, yk, γk, τ k, λk), (144)

yk+1 = argmin
y

Lρ1,ρ2,β(xk+1, y, γk, τ k, λk), (145)

γk+1 = γk + ρ1h(xk+1), (146)

τ k+1 = τ k + ρ2p(yk+1), (147)

λk+1 = λk + β(Axk+1 + Byk+1 − b). (148)

We call (144) ∼ (148) ADMM-NC (ADMM for Nonlinear
Convex problems). Obviously, every convergence result for
ADMM is suitable for ADMM-NC.

Any other ADMMs proposed in Sec. II can solve P4 (P ′4). We
will not list them here.



General Nonliner Convex Problems

We extend P4 to the general nonlinear case:

P5 : min
x

f (x) ≡
m∑
i=1

fi(x) (149)

s.t. hi(x) ≤ 0,∀i ∈ [m], (150)
Ax = b. (151)

∀i ∈ [m], hi(x) are scalars. Note that P5 is di�erent from P3,
we have only one primal variable x, other than {xi}i∈[m]. But
we can transform it to the shape of P3.

In this case, we introduce the auxiliary variables z and
{xi}i∈[m], and they satisfy

z ≡ xi,∀i ∈ [m]. (152)



ADMM-GNC
Then P5 can be transformed into P ′5:

P ′5 : min
{xi}i∈[m],z

m∑
i=1

fi(xi) (153)

s.t. hi(xi) ≤ 0,∀i ∈ [m], (154)
A′z − I ′x ′ = b′, (155)

where (155) is to guarantee that (152) holds and it has the
shape:

I
I
...
I
A

 z −


I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I
0 0 · · · 0



x1
x2
...
xm

 =


0
0
...
0
b

 . (156)

By solving P ′5, we solve P5 with z ≡ xi ≡ x.



ADMM-GNC
We can further introduce Hi(xi) = max{hi(x), 0},∀i ∈ [m].
Then we get P ′′5 :

P ′′5 : min
{xi}i∈[m],z

m∑
i=1

fi(xi) (157)

s.t. Hi(xi) = 0,∀i ∈ [m], (158)
A′z − I ′x ′ = b′. (159)

For P ′′5 , the augmented Lagrangian function is:

L{ρi}i,β(x ′, z, γ, λ) =
m∑
i=1

fi(xi) +
m∑
i=1

γiHi(xi) +
m∑
i=1

ρi
2
H 2

i (xi)

+〈λ,A′z − I ′x ′ − b〉+
β

2
‖A′z − I ′x ′ − b′‖2,

where γ = {γi}i∈[m].



ADMM-GNC

We then have the following iterations:

(x ′)k+1 = argmin
x′

L{ρi}i,β(x ′, zk, γk, λk), (160)

zk+1 = argmin
z

L{ρi}i,β((x ′)k+1, z, γk, λk), (161)

γk+1
i = γki + ρiHi(xk+1

i ),∀i ∈ [m], (162)

λk+1 = λk + β(A′zk+1 − I ′(x ′)k+1 − b′). (163)

Wherein, (160) can be solved by solving each xi in parallel. We
name this method ADMM-GNC (ADMM for General
Nonlinear Convex problems). This method is actually an
extension of ADMM-SPU.



Conclusion

I The nonlinear convex optimization problems are
transformed to the linear ones when solving them. The
technique is introducing auxiliary variables or functions.

I For a speicial case of nonlinear convex problems, i.e., P4,
which has two nonlinear constraints h0(x) ≤ 0 and
p0(y) ≤ 0, ADMM-NC solves it by introducing
h(x) = max{0, h0(x)} and p(y) = max{0, p0(y)}.

I For the general nonconvex problems P5, we use two
transformations, which introduces both slack variables
and auxiliary functions. Then, ADMM-GNC is proposed,
which is an extension of ADMM-SPU.
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Linear Nonconvex Problems

In the following, we firstly introduce the ADMMs for linear
nonconvex problems, since nonlinear problems can be easily
transformed to linear ones.

We consider the following multi-block problem P6:

P6 : min
{xi}i∈[m],y

m∑
i=1

fi(xi) + g(y) (164)

s.t.
m∑
i=1

Aixi + By = b, (165)

where xi ∈ Rdi , y ∈ Rdy ,Ai ∈ Rn×di ,B ∈ Rn×dy , and b ∈ Rn.
Similarly, we define x = (xT1 , ..., x

T
m)T ∈ R

∑
i di ,

A = [A1, ...,Am] ∈ Rn×
∑

i di .



Multi-Block Bregman ADMM
P6 satisfies the following constraint:

Assumption IV-1
∀i ∈ [m], fi are lower semicontinuous and g is L-smooth.
Note that all fi’s and g could be nonconvex. Since fi’s amd g
could be nonconvex, the vanilla ADMM is not suitable for P6
because the subproblems of xi of y are di�icult to solve. Let’s
try Bregman ADMM, specifically, LADMM-2, for solving it.

The multi-block Bregman ADMM has the following iterations:

xk+1
i = argmin

xi

(
fi(xi) + 〈λk,Aixi〉

+
β

2
‖
∑
j<i

Ajxk+1
j + Aixi +

∑
j>i

Ajxkj + Byk − b‖2

+ Dφi(xi, x
k
i )
)
. (for each i ∈ [m] in turn) (166)



LADMM-MB

The multi-block Bregman ADMM has the following iterations
(cont’d):

yk+1
i = argmin

y

(
g(y) + 〈λk,By〉

+
β

2
‖

m∑
i=1

Aixk+1
i + By − b‖2 + Dφ0(y, y

k)
)
, (167)

λk+1 = λk + β(
m∑
i=1

Aixk+1
i + Byk+1 − b). (168)

In (166) and (167), {Dφi}i=0,1,...,m are Bregman distances. We
call (166), (167), (168) LADMM-MB (Linearized ADMM for
Multi-Block problems) [2018-2020].



LADMM-MB

Similar to (90), we consider the following φ0:

φ0(y) :=
L + β‖B‖2

2
‖y‖2 − β

2
‖By‖2 − g(y), (169)

then the y-update reduces to

yk+1 = argmin
y

(
〈λk,By〉+ 〈∇g(yk), y〉

+ β〈BT (Axk+1 + Byk − b), y〉

+
L + β‖B‖2

2
‖y − yk‖2

)
= yk − 1

L + β‖B‖2
∇yLβ(xk+1, y, λk)|y=yk , (170)

where Lβ is the augmented Lagrangian function of P6.



LADMM-MB
Now let’s assume all {φi}i=0,1,...,m are ρ-strongly convex and
Li-smooth with ρ > 12(L2+2L20)

σ2β
.

From (166), we have: ∀i ∈ [m],

Lβ(xk+1
j≤i , x

k
j>i, y

k, λk) + Dφi(x
k+1
i , xki ) ≤ Lβ(xk+1

j<i , x
k
j≥i, y

k, λk).

(171)

With (14), we then have

ρ

2
‖xk+1

i − xki ‖2 ≤ Lβ(xk+1
j<i , x

k
j≥i, y

k, λk)− Lβ(xk+1
j≤i , x

k
j>i, y

k, λk).

(172)

Summing over i = 1, ...,m, we have

ρ

2
‖xk+1 − xk‖2 ≤ Lβ(xk, yk, λk)− Lβ(xk+1, yk, λk). (173)
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Similarly, from (167), we have

ρ

2
‖yk+1 − yk‖2 ≤ Lβ(xk+1, yk, λk)− Lβ(xk+1, yk+1, λk). (174)

From (168), we have

− 1
β
‖λk+1 − λk‖2 = Lβ(xk+1, yk+1, λk)− Lβ(xk+1, yk+1, λk+1).

(175)

Summing up the three results, we have

ρ

2
‖xk+1 − xk‖2 +

ρ

2
‖yk+1 − yk‖2 − 1

β
‖λk+1 − λk‖2

≤ Lβ(xk, yk, λk)− Lβ(xk+1, yk+1, λk+1). (176)



LADMM-MB

On the other hand, from the optimality condition of the y
update, we have

0 = ∇g(yk+1) + BTλk + βBT (Axk+1 + Byk+1 − b)

+∇φ0(yk+1)−∇φ0(yk)

= ∇g(yk+1) + BTλk+1 +∇φ0(yk+1)−∇φ0(yk). (177)

Now, we further assume that the surjectiveness of B holds, i.e.,
there exists σ > 0 such that ‖BTλ‖ ≥ σ‖λ‖ for all λ. It means
that B needs to be fully rank. Then we have

σ2‖λk+1 − λk‖2 ≤ ‖BT (λk+1 − λk)‖2

= ‖∇g(yk+1)−∇g(yk) +∇φ0(yk+1)−∇φ0(yk)

− (∇φ0(yk)−∇φ0(yk−1))‖2. (178)
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The RHS of (178) further satisfies

RHS ≤ 3‖∇g(yk+1)−∇g(yk)‖2 + 3‖∇φ0(yk+1)−∇φ0(yk)‖2

+ 3‖∇φ0(yk)−∇φ0(yk−1)‖2

≤ 3(L2 + L20)‖yk+1 − yk‖2 + 3L20‖yk − yk−1‖2, (179)

where we use the definition of smooth functions. Combing
(176) and (179), we have

ρ

2
‖xk+1 − xk‖2 +

ρ

2
‖yk+1 − yk‖2 +

1
β
‖λk+1 − λk‖2

≤ Lβ(xk, yk, λk)− Lβ(xk+1, yk+1, λk+1)

+
6(L2 + L20)

σ2β
‖yk+1 − yk‖2 +

6L20
σ2β
‖yk − yk−1‖2. (180)
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Defining

Φk := Lβ(xk, yk, λk) +
6L20
σ2β
‖yk − yk−1‖2, (181)

we have

ρ

2
‖xk+1 − xk‖2 +

(ρ
2
− 6L2 + 12L20

σ2β

)
‖yk+1 − yk‖2

+
1
β
‖λk+1 − λk‖2 ≤ Φk − Φk+1. (182)

If we further assume that {xk, yk, λk}k are bounded and∑
i fi(xi) + g(y) is bounded below, we know that Φk is lower

bounded by some Φ∗.
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Summing the above inequality over k = 0, ...,K , we have

min
k≤K

{ρ
2
‖xk+1 − xk‖2 +

(ρ
2
− 6L2 + 12L20

σ2β

)
‖yk+1 − yk‖2

+
1
β
‖λk+1 − λk‖2

}
≤ Φ0 − Φ∗

K + 1
.

(183)

The result means that LADMM-MB needs O(1/ε2) iterations
to find (xk+1, yk+1, λk+1) such that

‖xk+1 − xk‖ ≤ ε, ‖yk+1 − yk‖ ≤ ε, ‖λk+1 − λk‖ ≤ ε.
(184)
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From (177) we have

‖∇g(yk+1) + BTλk+1‖ = ‖∇φ0(yk+1)−∇φ0(yk)‖
≤ L0‖yk+1 − yk‖ ≤ O(ε). (185)

Further, from the update of λ we have

‖Axk+1 + Byk+1 − b‖ =
1
β
‖λk+1 − λk‖ ≤ O(ε). (186)

Further, from the optimality of xi, we have that there exists
∇̃fi(xk+1

i ) ∈ ∂fi(xk+1
i ) such that

∇̃fi(xk+1
i ) + AT

i

[
λk + β

(∑
j≤i

Ajxk+1
j +

∑
j>i

Ajxkj + By − b
)]

+∇φi(xk+1
i )−∇φi(xki ) = 0. (187)
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Therefore we have

‖∇̃fi(xk+1
i ) + AT

i λ
k+1‖ ≤ ‖∇φi(xk+1

i )−∇φi(xki )‖

+β
∥∥∥AT

i

(∑
j>i

Aj(xk+1
j − xkj ) + B(yk+1 − yk)

)∥∥∥ ≤ O(ε). (188)

The above analysis shows that, under some conditions,
LADMM-MB needs O( 1

ε2
) iterations to find an ε-approximate

KKT point. The result is formally presented in Theorem IV-1.
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The following proof was refined in 2020.

Theorem IV-1 (Convergence Rate of LADMM-MB)
Assume that Assumption IV-1 and the surjectiveness of B holds
(there exists σ > 0 such that ‖BTλ‖ ≥ σ‖λ‖ for all λ, it means
that B needs to be fully rank), and φi is ρ-strongly convex and
Li-smooth with

ρ >
12(L2 + 2L20)

σ2β
, i = 0, ...,m. (189)

Suppose that the sequence {(xk, yk, λk)}k is bounded and∑m
i=1 fi(xi) + g(y) is bounded below with bounded (x, y). Then

LADMM-MB needs O( 1
ε2

) iterations to find an ε-approximate
KKT point (xk+1, yk+1, λk+1).
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Theorem IV-1 (cont’d) (Convergence Rate of LADMM-MB)
Namely,∥∥∥ m∑

i=1

Aixk+1
i + Byk+1 − b

∥∥∥ ≤ O(ε), (190)

‖∇g(yk+1) + BTλk+1‖ ≤ O(ε), (191)

dist
(
− AT

i λ
k+1, ∂fi(xk+1

i )
)
≤ O(ε),∀i ∈ [m]. (192)

In this theorem, we assume that the objectives are proper and
lower semicontinuous such that the subdi�erential is well
defined (Otherwise (171) may not hold). We assume that the
objective is coercive over the entire space.
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In the proof of Theorem IV-1, a crucial step is to bound the
dual variables by the primal ones, i.e., (178) and (179):

σ2‖λk+1 − λk‖2 ≤ 3(L2 + L20)‖yk+1 − yk‖2 + 3L20‖yk − yk−1‖2,

which is established via the surjectiveness assumption:

‖BTλ‖ ≥ σ‖λ‖,∀λ. (193)

Nevertheless, we can replace it by a weaker assumption:

Im(Ai) ⊆ Im(B),∀i ∈ [m]. (194)

In this case, we have

λk+1 − λk = β(Axk+1 + By − b) ∈ Im(B). (195)
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Suppose that the SVD of B is B = UΣV T . Then we may write
λk+1 − λk = Uα for some α. Further we have

‖BT (λk+1 − λk)‖2 = ‖VΣU TUα‖2 = ‖Σα‖2

≥ λ+(BBT )‖α‖2 = λ+(BBT )‖λk+1 − λk‖2, (196)

where λ+(BBT ) is the smallest strictly positive eigenvalue of
BBT . Then we get (193). In other words, with a weaker
assumption Im(Ai) ⊆ Im(B), we can still get the intermediate
results (178) and (179). In this case, we do not require B to be
fully rank any more.

Besides, it’s easy to check that when the problem P6 has only
one block, the new assumption can be removed because (194)
always holds.



The Vanilla ADMM for P6

LADMM-MB is actually an application of Bregman ADMM.
What if we remove the Bregman distance from the
subproblems (166) and (167)? In this case LADMM-MB
reduces to the vanilla ADMM. If we want the vanilla ADMM
works fine for solving P6, we need to further assume that
1. ∀i ∈ [m], the smallest eigenvalue of AT

i Ai is positive, and
2. β should be chosen large enough

such that Lβ(x, y, λ) is µ-strongly convex w.r.t. xi (assume that
fi is smooth if necessary). Then for the first step, we have

Lβ(xk+1
j<i , x

k
j≥i, y

k, λk)− Lβ(xk+1
j≤i , x

k
j>i, y

k, λk) ≥ µ

2
‖xk+1

i − xki ‖2,

and the proof can continue.
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Recall that LADMM-MB is O(1/ε2) when solving P6 under
the condition that
1. Assumption IV-1 holds, and
2. the surjectiveness of B holds (or

Im(Ai) ⊆ Im(B),∀i ∈ [m]).
i
If we let LADMM-MB works under the following new
assumption:

Assumption IV-2
All fi’s and g are L-smooth.
In other words, we have more assumptions on the functions fi
and g, other than Ai and B. Then the O(1/ε2)-complexity can
still be achieved. The proof details is omi�ed.



PADMM-EA

In the y-update of LADMM-MB (formula (170)), the Bregman
distance essentially results in adding a proximal term, i.e.,
β′

2 ‖y − yk‖2, to the augmented Lagrangian function. What if
we use another proximal term?

In the following, we introduce PADMM-EA (Proximal ADMM
with Exponential Averaging) [SIAM, 2020], which uses
β′

2 ‖y − zk‖2 instead, in which zk is an exponential averaging of

y0, y1, ..., yk.



PADMM-EA
Now we consider a more general form of P6, which is named
as P7:

P7 : min
{xi}i∈[m]

f (x1, ..., xm) (197)

s.t.
m∑
i=1

Aixi = b, (198)

with a non-separable objective. Equally, denote

x = (xT1 , ..., x
T
m)T , A = [A1, ...,Am].

Define the following proximal augmented Lagrangian function

P(x, z, λ) = f (x) + 〈λ,Ax − b〉+
β

2
‖Ax − b‖2 +

ρ

2
‖x − z‖2.

(199)
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PADMM-EA consists of the following iterations:

for j ∈ [m] in turn:

xk+1
j = xkj − α1∇xjP

(
{xk+1

i }1≤i≤j−1, xj, {xki }j+1≤i≤m, zk, λk
)
,

(200)

λk+1 = λk + α2(Axk+1 − b), (201)

zk+1 = zk + α3(xk+1 − zk). (202)

From (202) we have

zk+1 =
k∑

t=0

α3(1− α3)
k−txt+1 + (1− α3)

k+1z0. (203)

In every iteration k, we do not want xk+1 to deviate too much
from zk.



PADMM-EA

When f is L-smooth w.r.t. x, if we choose α1, α2, and α3
appropriately and le�ing ρ > L, then PADMM-EA is of O(1/ε2)
complexity.

The proof is complicate but similar to the proof of Theorem
IV-1. The key idea is still to prove that

min
k=0,1,...,K

{
‖xk+1 − xk‖+ ‖zk+1 − zk‖

+‖Ax(zk, λk)− b‖
}
≤ O(ε), (204)

where x(zk, λk) = argminx P(x, zk, λk).

I may update the proof details in future :-).



Conclusion

Time to make a conclusion.
I Our study on nonconvex optimization problems is started

from the multi-block form P6, in which all fi’s and g can
be nonconvex. However, to guarantee the convergence,
we have a global assumption —— All these functions are
lower-semicontinuous and g is L-smooth.

I We firstly show LADMM-MB, which is a variant of
Bregman ADMM. Then, we use a lot of space to show that
under the global assumption, the strongly convexity and
smooth property on the Bregman distance functions, and
I the surjectiveness of B, or
I Im(Ai) ⊆ Im(B),∀i ∈ [m],

LADMM-MB can achieve a O(1/ε2) rate.
I If all fi’s and g are L-smooth, then without the

assumption of the surjectiveness of B (or Im(Ai) ⊆ Im(B),
∀i ∈ [m]), LADMM-MB can still achieve a O(1/ε2) rate.



Conclusion (Cont’d)

I The reason we use Bregman ADMM to solve P6, rather
than the vanilla ADMM, is that, the objective is
nonconvex, and thus the subproblems are di�icult to
solve. However, if
1. The smallest eigenvalue of AT

i Ai is positive, and
2. β is chosen large enough such that Lβ(x, y, λ) is µ-strongly

convex w.r.t. x,

then the vanilla ADMM can also achieve a O(1/ε2) rate.
I We then introduce a recently developed method, called

PADMM-EA. It adopts both proximal method and moving
average to solve the nonconvex problems. PADMM-EA
can achieve a O(1/ε2) rate.
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Stochastic Problems
We consider the following linearly constrained two-block
optimization problem P8:

P8 : min
x1,x2

f1(x1) + f2(x2) (205)

s.t. A1x1 + A2x2 = b, (206)

where f1(x1) has the following structure:

f1(x1) := Eξ
[
F(x1; ξ)

]
, (207)

where F(x1; ξ) is a stochastic component indexed by a random
variable ξ. f1(x1) can also have the following structure:

f1(x1) :=
1
n

n∑
i=1

Fi(xi). (208)

We name P8 with (207) P ′8, and P8 with (208) P ′′8 . For example,
f1(x1) is a training loss on data and f2(x2) is a regularizer.



SADMM

We firstly consider P ′8. In each iteration, we independently
sample a stochastic index ξ and compute the stochastic gradient
∇F(x1; ξ). We also denote ∇F(x1; ξ) by ∇̃f1(x1) for
simplification.

Now we introduce SADMM (Stochastic ADMM) [ICML,
2013]. It is built on the following approximated augmented
Lagrangian function L̂kβ :

L̂kβ(x1, x2, λ) := f1(xk1 ) + 〈∇̃f1(x1), x1 − xk1 〉︸ ︷︷ ︸
linearization of f1

+f2(x2)

+
β

2
‖A1x1 + A2x2 − b +

1
β
λ‖2 +

1
2ηk+1

‖x1 − xk1‖2︸ ︷︷ ︸
the proximal term

. (209)



SADMM
SADMM works as follows.

xk+1
1 = argmin

x1
L̂kβ(x1, xk2 , λ

k), (210)

xk+1
2 = argmin

x2
L̂kβ(xk+1

1 , x2, λk), , (211)

λk+1 = λk + β(A1xk+1
1 + A2xk+1

2 − b). (212)

Although not easy, we can prove that SADMM can only
achieve O(1/

√
K) rate. Compared with the O(1/K)-rate of

ADMM for P ′2, SADMM is much slower. The result is shown
in the following theorem.

Theorem V-1 (O(1/
√
K) rate of SADMM)

Suppose that f1 is µ-strongly convex and L-smooth, and f2 is
convex. Assume that the variance of f1’s gradient is uniformly
bounded by σ2, i.e.,

Eξ
[
‖∇F1(x1; ξ)−∇f1(x1)‖2

]
≤ σ2,∀x1. (213)

colorwhitei



SADMM

Theorem V-1 (cont’d) (O(1/
√
K) rate of SADMM)

Define D1 = ‖x01 − x∗1‖, and D2 = ‖A2x02 − A2x∗2‖.
For the generally convex case, i.e., µ = 0, set the stepsize
ηk = 1

2L+
√
kσ/D1

,

x̄K1 =
1∑K

k=1 ηk

K∑
k=1

ηkxk1 , and x̄
K
2 =

1∑K
k=1 ηk

K∑
k=1

ηkxk2 ,

then for any ρ > 0 and su�iciently large K , we have

E[f1(x̄K1 )] + E[f2(x̄K2 )]− f1(x∗)− f2(x∗) + ρE
[
A1x̄K1 + A2x̄K2 − b

]
≤ 2D1σ logK√

K
+

σ√
K

[D1

2
+

ρ2

2β(2LD1 + σ)
+

βD2
2

2(2LD1 + σ)

]
.

(214)



SADMM

Theorem V-1 (cont’d) (O(1/
√
K) rate of SADMM)

For the strongly convex case, i.e., µ > 0, set the stepsize
ηk = 1

2L+kµ ,

x̄K1 =
1
K

K∑
k=1

xk1 , and x̄
K
2 =

1
K

K∑
k=1

xk2 ,

then for any ρ > 0, we have

E[f1(x̄K1 )] + E[f2(x̄K2 )]− f1(x∗)− f2(x∗) + ρE
[
A1x̄K1 + A2x̄K2 − b

]
≤ σ2(logK + 1)

µK
+

1
K

(
LD2

1 +
ρ2

2β
+
βD2

2

2

)
.

(215)



SVRG-ADMM

SADMM is criticized for its O(1/
√
K) rate. Nevertheless, it

can be accelerated by the variance reduction (VR) technique.
VR is to frequently pre-store a snapshot vector and to control the
variance via the snapshot vector and the latest iterate.

Specifically, we consider the following iterations to solve P ′′8 :

xk+1
s,1 = argmin

x1

(
〈∇̃f1(xks,1), x1 − xks,1〉+ f1(xks,1)︸ ︷︷ ︸

linearization of f1(x1)

+ 〈β(A1xks,1 + A2xks,2 − b) + λks ,A1(x1 − xks,1)〉︸ ︷︷ ︸
linearization of the aug. term, constant removed

+
1
2η1
‖x1 − xks,1‖2︸ ︷︷ ︸

the proximal term

)
(216)



SVRG-ADMM

We consider the following iterations (cont’d):

xk+1
s,2 = argmin

x2

(
f2(x2)

+ 〈β(A1xk+1
s,1 + A2xks,2 − b) + λks ,A2(x2 − xks,2)〉

+
1
2η2
‖x2 − xks,2‖2

)
, (217)

λk+1
s = λks + β(A1xk+1

s,1 + A2xk+1
s,2 − b), (218)

where

η1 =
1

9L + β‖A1‖2
and η2 =

1
β‖A2‖2

.



SVRG-ADMM
The algorithm is presented below:

1. Initialize x00,1, x
0
0,2, λ

0
0, and x̃0,1 ← x00,1

2. Set epoch length m and stepsize η
3. for s = 0, ..., S − 1 do

3.1 for k = 0, ...,m− 1 do
3.1.1 Randomly sample ik,s from [n]
3.1.2 Estimate the gradient at the sample ik,s:

∇̃f1(xks,1) = ∇Fik,s(xks,1)−∇Fik,s(x̃s,1) +
1
n

n∑
i=1

∇Fi(x̃s,1)

(219)

3.1.3 Update xk+1
s,1 by (216)

3.1.4 Update xk+1
s,2 by (217)

3.1.5 Update λk+1
s by (218)

3.2 Update: x̃s+1,i =
1
m

∑m
k=1 x

k
s,i, x

0
s+1,i = xms,i, i = 1, 2, and

λ0s+1 = λms



SVRG-ADMM

The algorithm above is called SVRG-ADMM [NeurIPS, 2013;
IJCAI, 2016]. The main step to reduce the variance is (219),
where x̃s,1 is the snapshot vector.

Theorem V-2 (O(1/S) rate of SVRG-ADMM)
Suppose that Fi is convex and L-smooth for i ∈ [n] and f2 is
convex. Then SVRG-ADMM is eable to achieve O( 1

S ) rate.
i
The result shows that SVRG-ADMM is able to achieve linear
convergence rate. The proof details are omi�ed here.



SADMM-MA

Either SADMM or SVRG-ADMM are transformed to act like a
determinisitc algorithm through sampling. It’s interesting to
fuse them with Momentum Acceleration.

Momentum Acceleration works as follows —— the move
stepsize of x is not only determined by current (sub)gradient,
but also whether the gradients in the past iterations are
consistent in each dimension. More details about this can be
found here.

https://hliangzhao.cn/articles/000001629787956b3a0b0bb91bb47f5b69130ab27a647cc000


SADMM-MA
Specifically, we consider the following problem, which is a
variant of P8:

P ′′′8 : min
x1,x2

(
h1(x1) + f1(x1) + h2(x2) +

1
n

n∑
i=1

F2,i(x2)
)

(220)

s.t. A1x1 + A2x2 = b, (221)

where f1(x1) and F2,i(x2) with i ∈ [n] are convex and
L1-smooth and L2-smooth, respectively, and h1(x1) and h2(x2)
are also convex and their proximal mappings can be solved
e�iciently. We define

f2(x2) =
1
n

n∑
i=1

F2,i(x2),

J1(x1) = h1(x1) + f1(x1), J2(x2) = h2(x2) + f2(x2),

x = (xT1 , x
T
2 )T ,A = [A1,A2], and J(x) = J1(x1) + J2(x2).



SADMM-MA
We then consider the following iterations:

xk+1
s,1 = argmin

x1

(
h1(x1)︸ ︷︷ ︸
~

+ 〈∇f1(yk
s,1), x1〉︸ ︷︷ ︸
}

+ 〈 β
θ1,s

(A1yk
s,1 + A2yk

s,2 − b) + λks ,A1x1〉︸ ︷︷ ︸
�

+
(L1 + β

θ1,s
‖A1‖2

2

)
‖x1 − yk

s,1‖2︸ ︷︷ ︸
⊗

)
, (222)

where θ1,s will be used in momentum, and yk
s,1 is the

extrapolation term of x1, which will be introduced later. } is
the linearization of f1 at yk

s,1 (constant removed). � is the
linearization of the augmented term
β
2 ‖A1x1 + A2x2 − b + 1

β
λ‖2 (constant removed).



SADMM-MA
(222) is similar to (91). Besides, ~+⊗ is the proximal
mapping of h1 at yk

s,1. For the update of x2, we have:

xk+1
s,2 = argmin

x2

(
h2(x2) + 〈∇̃f2(yk

s,2), x2〉

+ 〈 β
θ1,s

(A1xk+1
s,1 + A2yk

s,2 − b) + λks ,A2x2〉

+

[(1 + 1
$θ2

)L2 + β
θ1,s
‖A2‖2

2

]
‖x2 − yk

s,2‖2
)
, (223)

where θ2 where be used in momentum, and yk
s,2 is the

extrapolation term of x2, and

∇̃f2(yk
s,2) =

1
$

∑
ik,s∈Ik,s

(
∇F2,ik,s(yk

s,2)−∇F2,ik,s(x̃s,2) +∇f2(x̃s,2)
)
,

in which $ is the mini-batch size of indices sampled, which
will be introduced later.



SADMM-MA

Similar to SVRG-ADMM, this new method has two loops. We
firstly demonstrate the inner loop:
1. for k = 0, ...,m− 1 do

1.1 Update dual variable:

λks = λ̃ks +
βθ2
θ1,s

(A1xks,1 + A2xks,2 − b̃s) (224)

1.2 Update xk+1
s,1 by (222)

1.3 Update xk+1
s,2 by (223)

1.4 Update dual snapshot variable:

λ̃k+1
s = λks + β(A1xk+1

s,1 + A2xk+1
s,2 − b) (225)

1.5 Update the extrapolation term yk+1
s :

yk+1
s = xk+1

s + (1− θ1,s − θ2)(xk+1
s − xks ) (226)



SADMM-MA
We then demonstrate the outer loop:
1. Initialize x00 = 0, b̃0 = 0, λ̃00 = 0, x̃0 = x00 , y

0
0 = x00

2. Set β, τ = 2, c = 2, θ1,s = 1
c+τ s , θ2 =

m−τ
τ(m−1)

3. for s = 0, ..., S − 1 do
3.1 Do inner loop demonstrated above
3.2 Set primal variables x0s+1 = xms
3.3 Update primal snapshot variable x̃s+1:

x̃s+1 =
1
m

(
[1− (τ − 1)θ1,s+1

θ2
]xms + [1+

(τ − 1)θ1,s+1

(m− 1)θ2
]

m−1∑
k=1

xks
)

3.4 Update dual snapshot variable:

λ̃0s+1 = λm−1s + β(1− τ)(A1xms,1 + A2xms,2 − b) (227)

b̃s+1 = A1x̃s+1,1 + A2x̃s+1,2 (228)

3.5 Update the extrapolation term:

y0s+1 = (1− θ2)xms + θ2x̃s+1 +
θ1,s+1

θ1,s

[
(1− θ1,s)xms

−(1− θ1,s − θ2)xm−1s − θ2x̃s
]

(229)

i



SADMM-MA

The above algorithm is called SADMM-MA [NeurIPS, 2017].
We can find that in the outer loop, it maintains several
snapshot vectors x̃s, b̃s and the extrapolation terms y0

s . In the
inner loop, the primal variables xks and the snapshot dual
variable λ̃ks are updated.

The algorithm is complicated. It is proved to have a O(1/S)
rate, which is linear. It runs faster than SVRG-ADMM since
it’s a fuse of SVRG-ADMM and the Momentum Acceleration
technique.



SADMM-NC

In the following, we study the ADMMs for nonconvex
stochastic problems. We consider P ′8 under the following
assumption:

Assumption V-1
f1 and f2 are L1-smooth and L2-smooth, respectively. Moreover,
the variance of stochastic gradients for f is uniformly bounded
by σ2, i.e.,

Eξ
[
‖∇F1(x1; ξ)−∇f1(x1)‖2

]
≤ σ2,∀x1. (230)

Note that both f1 and f2 can be nonconvex.



SADMM-NC
We name the following algorithm SADMM-NC:

xk+1
1 = xk1 − η

(
∇̃f (xk1 ) + βAT

1

(
1
xk1 + A2xk2 − b +

λk

β

)
︸ ︷︷ ︸

the grad. of (209), proximal term removed

)
,

(231)

xk+1
2 = argmin

x2

(
f2(x2) + 〈λk,A2x2〉

+
β

2
‖A1xk+1

1 + A2x2 − b‖2 + Dφ(x2, xk2 )
)
, (232)

λk+1 = λk + β(A1xk+1
1 + A2xk+1

2 − b), (233)

where

∇̃f (xk) =
1
$

∑
ξ∈Ik

∇F(xk, ξ) (234)

is the mini-batch stochastic estimator of∇f (xk).



SPIDER-ADMM

Unfortunately, SADMM-NC can only achieve O(1/ε4) rate
under Assumption V-1 and the surjectiveness of A2. It’s very
slow.

The Stochastic Path-Integrated Di�erential Estimator
(SPIDER) technique [ICML, 2017, 2019; NeurIPS, 2018] is a
radical VR method that is used to track quantities using
reduced stochastic oracles. In the following, we show how to
accelerate SADMM-NC with the SPIDER technique.



SPIDER-ADMM
Now we consider a more general multi-block linearly
constrained nonconvex problem P9:

P9 : min
{xi}i∈[m],y

m∑
i=1

fi(xi) + g(y) (235)

s.t.
m∑
i=1

Aixi + By = b, (236)

where fi(xi) = Eξi [Fi(xi; ξi)] for i ∈ [m], under the following
assumption:

Assumption V-2
g is L0-smooth. For each i ∈ [m], Fi(xi; ξi) is Li-smooth w.r.t. xi

for all ξi. Moreover, the variance of stochastic gradients of fi is
uniformly bounded by σ2, i.e.,

Eξi
[
‖∇Fi(xi; ξi)−∇fi(xi)‖2

]
≤ σ2,∀i ∈ [m]. (237)



SPIDER-ADMM
We use the following iterations to solve it:

for each i ∈ [m] in turn: (238)

xk+1
i = xki − η

[
∇̃fi(xki )

+ βAT
i

(∑
j<i

Ajxk+1
j +

∑
j≥i

Ajxkj + Byk − b +
λk

β

)]
(239)

yk+1 = argmin
y

(
g(y) + 〈λk,By〉

+
β

2
‖
∑
i

Aixk+1
i + By − b‖2 + Dφ(y, yk)

)
(240)

λk+1 = λk + β(
∑
i

Aixk+1
i + Byk+1 − b). (241)

This method is called SPIDER-ADMM. It actually has the same
shape with SADMM-NC.



SPIDER-ADMM

The di�erence lies in that how we calculate the estimated
stochastic gradient ∇̃fi(xki ).
1. For a certian hyper-parameter q, if k is divisible by q, then

∇̃fi(xki ) =
1
$1

∑
ξi∈Ik,i

∇Fi(xki ; ξi), ∀i ∈ [m], (242)

where $1 is the mini-batch size.
2. Otherwise,

∇̃fi(xki ) =
1
$2

∑
ξi∈Ik,i

(
∇Fi(xki ; ξi)−∇Fi(xk−1i ; ξi)

)
+ ∇̃fi(xk−1i ), ∀i ∈ [m], (243)

where $2 is the mini-batch size.



SPIDER-ADMM

Compared with SADMM, SPIDER-ADMM is able to achieve a
O(1/ε3) rate under Assume V-2 and the surjectiveness of B.

It’s worth mentioning that, when fi has the form of (208),
SPIDER-ADMM can achieve a O(n + n1/2

ε2
) rate.

For generic nonconvex optimization, SPIDER-ADMM is more
e�icient compared with the traditional VR methods, for
example, SVRG-ADMM, in the sense that the la�er can only
achieve a complexity of O(min{ 1

ε10/3
, n + n2/3

ε2
}).



Conclusion

Time to make a conclusion.
I Stochastic problems are problems in which the objective

(or part of the objective) has a stochastic component.
Nearly all machine learning problems are stochastic
problems.

I We firstly introduce SADMM, which is built on an
approximated augmented Lagrangian function. Even
under strong assumptions, SADMM can only achieve
O(1/

√
K) rate.

I Then we introduce SVRG-ADMM, which is accelerated by
the variance reduction (VR) technique. VR is to frequently
pre-store a snapshot vector and to control the variance via
the snapshot vector and the latest iterate. SVRG-ADMM
can achieve O(1/S) rate, which is much faster.



Conclusion (Cont’d)

I We further demonstrate SADMM-MA, which is a
combination of SADMM and the Momentum technique.
SVRG-ADMM can achieve O(1/S) rate, and it’s faster
than SVRG-ADMM.

I SADMM, SVRG-ADMM, and SADMM-MA are good for
convex stochastic problems (at least the objective has a
convex part). When the problem is nonconvex, they can
only achieve O(1/ε4) rate.

I We then introduce SPIDER-ADMM, which achieves a
speed up on the above SADMMs. It’s able to achieve a
O(1/ε3) rate. Although not very fast, it is a big
improvement for stochastic nonconvex problems.
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Distributed Optimization

Consider the following problem P10 in a distributed
environment:

P10 : min
x∈Rd

f (x) ≡
m∑
i=1

fi(x), (244)

where m agents form a connected and undirected network
and the local function fi is only accessible by agent i due to
the storage or privacy reasons. In P10, the agents work
collaboratively without revealing their own information to
each other. We consider two possible scenarios:
I Centralized: There is a centralized master agent and m

worker agents. Each worker agent is connected to the
master agent

I Decentralized: No centralized agent. Each agent only
communicates with its neighbors



Centralized Distributed Optimization

In the centralized network, P10 can be reformulated as P ′10:

P ′10 : min
{xi}i∈[m],z

m∑
i=1

fi(xi) (245)

s.t. xi = z, i ∈ [m]. (246)

P ′10 is obviously solvable by the vanilla ADMM.

The augmented Lagrangian function is:

L(x, z, λ) =
∑
i

(
fi(xi) + 〈λi, xi − z〉+

β

2
‖xi − z‖2

)
. (247)



CADMM

We have the following iterations:

zk+1 = argmin
z

∑
i

(
〈λki , xki − z〉+

β

2
‖xki − z‖2

)
=

1
m

∑
i

(
xki +

1
β
λki

)
, (248)

xk+1
i = argmin

xi

(
fi(xi) + 〈λk, xi − zk+1〉+

β

2
‖xi − zk+1‖2

)
= proxβ−1fi

(
zk+1 − 1

β
λki

)
, i ∈ [m], (249)

λk+1
i = λki + β(xk+1

i − zk+1), i ∈ [m], (250)

where proxαf (z) := argminx

{
f (x) + 1

2α‖z − x‖2
}
is the

formal definition of the proximal operator.



CADMM
The iterations above are carried by di�erent characters.
Specifically, for the master:
1. for k = 0, 1, 2, ... do

1.1 Wait until receiving xki and λki from all the workers
1.2 Update zk+1 by (248)
1.3 Send zk+1 to all the workers

For each worker i:
1. Initialize x0i , λ

0
i

2. for k = 0, 1, 2, ... do
2.1 Send xki and λki to the master
2.2 Wait until receiving zk+1 from the master
2.3 Update xk+1

i and λk+1
i by (249) and (250), respectively

i
We name them CADMM-M and CADMM-W, respectively
(Centralized ADMM for the master/worker). From Sec. II,
CADMM is able to achieve a linear rate when each fi is
µ-strongly convex and L-smooth.



CLADMM
Obviously, LADMMs can also be applied to P ′10, especially
when each fi is L-smooth and the proximal operator in (249) is
not easily computable. By adding the Bregman distance with

φi(xi) =
L
2
‖xi‖2 − fi(xi) (251)

on (249), we have:

xk+1
i = argmin

xi

(
fi(xi) + 〈λk, xi − zk+1〉+

β

2
‖xi − zk+1‖2

+ Dφi(xi, x
k
i )
)

= argmin
xi

(
〈∇fi(xki ), xi − xki 〉+

L
2
‖xi − xki ‖2

+ 〈λki , xi − zk+1〉+
β

2
‖xi − zk+1‖2

)
=

1
L + β

(
Lxki + βzk+1 −∇fi(xki )− λki

)
, i ∈ [m]. (252)



Acc-CLADMM

Replacing (249) by (252) while keeping the le� unchanged, we
get CLADMM-M and CLADMM-W. Similarly, CLADMM is
able to achieve a linear rate when each fi is µ-strongly convex
and L-smooth.

Now we consider the Accelerated ADMMs. Specifically, let’s
extend Acc-LADMM-3 to solve P ′10 ——We linearize fi at the
auxiliary variable wk

i in the xi update step:

wk
i = θxki + (1− θ)x̃ki , (253)

zk+1 = argmin
z

∑
i

(
〈λki , xki − z〉+

βθ

2
‖xki − z‖2

)
=

1
m

∑
i

(
xki +

1
βθ
λki
)
. (254)



Acc-CLADMM
We linearize fi at the auxiliary variable wk

i in the xi update
step (cont’d):

xk+1
i = argmin

xi

(
〈∇fi(wk

i ), xi − xki 〉+ 〈λki , xi − zk+1〉

+ βθ〈xki − zk+1, xi〉

+
1
2

(
θ

α
+ µ)

∥∥xi − 1
θ
α

+ µ

( θ
α
xki + µwk

i

)∥∥2)
=

1
θ
α

+ µ

{
µwk

i +
θ

α
xki −

[
∇fi(xki ) + λki + βθ(xki − zk+1)

]}
,

(255)

z̃k+1 = θzk+1 + (1− θ)z̃k, (256)

x̃k+1
i = θxk+1

i + (1− θ)x̃ki , (257)

λk+1
i = λki + βθ(xk+1

i − zk+1). (258)



Acc-CLADMM

We use the following procedures to consume the above
iterations —— For the master, we have:
1. Initialize z̃0

2. for k = 0, 1, 2, ... do
2.1 Wait until receiving xki and λki from all the workers
2.2 Update zk+1 and z̃k+1 by (254) and (256), respectively
2.3 Send zk+1 to all the workers

For each worker i:
1. Initialize x0i , λ

0
i , x̃

0
i

2. for k = 0, 1, 2, ... do
2.1 Send xki and λki to the master
2.2 Wait until receiving zk+1 from the master
2.3 Update xk+1

i , x̃k+1
i , λk+1

i , and wk+1
i by (255), (257), (258), and

(253), respectively

They are called Acc-CLADMM-M and Acc-CLADMM-W,
respectively.



Acc-CLADMM

Unsurprisingly, Acc-CLADMM is able to achieve a linear rate
when each fi is µ-strongly convex and L-smooth. The
comparisons between the introduced methods for P ′10:

Method Rate

CADMM O(
√

L
µ

log 1
ε
)

CLADMM O( L
µ

log 1
ε
)

Acc-CLADMM O(
√

L
µ

log 1
ε
)

o
We can find that, CLADMM is slower than CADMM, as it is
the cost of linearization. However, Acc-CLADMM is able to
remedy that, and it has the same rate as CADMM.



Decentralized Distributed Optimization

Now we study how to solve P10 in a decentralized network.

Formally, we denote the set of edges by E (recall that the
network is undirected), and it it defined as follows —— Assume
that all nodes are ordered from 1 to m. For any two nodes i and
j, if i and j are directly connected in the network and i < j, we
say (i, j) ∈ E . To simplify the presentation, we order the edges
from 1 to |E|.

For each node i, we denote Ni as its neighborhood:

Ni := {j | (i, j) ∈ E or (j, i) ∈ E}, (259)

and di = |Ni| as its degree.



Decentralized Distributed Optimization

With the above preliminaries, we can rewrite P10 as the
following P ′′10:

P ′′10 : min
{xi}i∈[m],{zij}(i,j)∈E

m∑
i=1

fi(xi) (260)

s.t. xi = zij, xj = zij, (i, j) ∈ E . (261)

In this case, the augmented Lagrangian function is

L(x, z, λ) =
∑
i

fi(xi) +
∑
(i,j)

(
〈λij, xi − zij〉+ 〈γij, xj − zij〉

+
β

2
‖xi − zij‖2 +

β

2
‖xj − zij‖2

)
. (262)



DADMM
We try to use the vanilla ADMM to solve it.

xk+1
i = argmin

xi

[
fi(xi) +

∑
j:(i,j)∈E

(
〈λkij, xi − zkij〉+

β

2
‖xi − zkij‖2

)
+
∑

j:(j,i)∈E

(
〈γkji , xi − zkji〉+

β

2
‖xi − zkji‖2

)]
, (263)

zk+1
ij = argmin

zij

(
− 〈λkij + γkij , zij〉

+
β

2
‖xk+1

i − zij‖2 +
β

2
‖xk+1

j − zij‖2
)

=
1
2β

(λkij + γkij) +
1
2

(xk+1
i + xk+1

j ), (264)

λk+1
ij = λkij + β(xk+1

i − zk+1
ij ), (265)

γk+1
ij = γkij + β(xk+1

j − zk+1
ij ). (266)



DADMM

How to consume the above iterations? Here we have a
problem —— Who is responsible for updating λij, γij , and zij
associated with each edge (i, j)? A naive solution is, node i is
responsible to update the edges in the set
N ′i := {(i, j) | if (i, j) ∈ E}.

(1, 2)
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In this figure, node 1 is responsible for updating the variables
on (1, 2) and (1, 3); Node 2 is responsible for updating the
variables on (2, 3); Node 3 does not have work to do.



DADMM
Then we can directly design the following procedures to
consume the above iterations —— For each node i:
1. Initialize x0i , {λ0ij}j∈N ′

i
, {γ0ij}j∈N ′

i
, and {z0ij}j∈N ′

i

2. Send x0i to each neighbor j ∈ Ni; Send {γ0ij}j∈N ′
i

and {z0ij}j∈N ′
i

to each
neighbor j ∈ Ni\N ′i

3. Wait until receiving {x0j }j∈Ni from each neighbor j ∈ Ni; Wait until
receiving γ0ij , and z0ij from each neighbor j ∈ Ni\N ′i

4. for k = 0, 1, 2, ... do
4.1 Update xk+1

i by (263) ({γkji , zkji}j∈Ni\N ′
i

are from the outside)
4.2 Send xk+1

i to each neighbor j ∈ Ni
4.3 Wait until receiving {xk+1

j }j∈Ni from each neighbor j ∈ Ni

4.4 for each j ∈ N ′i do
4.4.1 Update zk+1

ij by (264)
4.4.2 Update λk+1

ij by (265)
4.4.3 Update γk+1

ij by (266)

4.5 Send {γk+1
ij }j∈N ′

i
and {zk+1

ij }j∈N ′
i

to each neighbor j ∈ Ni\N ′i
4.6 Wait until receiving γk+1

ij , and zk+1
ij from each neighbor j ∈ Ni\N ′i

i



DADMM-S
We call the above procedure DADMM. It’s too complicated,
and each node has unequal amount of work. Nevertheless,
without any additional information, we can simplify it by
eliminating {zij, λij, γij}.

Summing (265) and (266) and using (264), we have

λk+1
ij + γk+1

ij = 0,∀k ≥ 0.

Initializing λ0ij = γ0ij = 0, we have

λkij + γkij = 0, ∀k ≥ 0. (267)

Plugging it into (264), we have

zk+1
ij =

1
2

(xk+1
i + xk+1

j ), ∀k ≥ 0. (268)

Similarly, we may initialize z0ij = 1
2(x

0
i + x0j ).



DADMM-S
From (268) and (265), we have

λk+1
ij = λkij +

β

2
(xk+1

i − xk+1
j ). (269)

So we have

λk+1
ij = β

k+1∑
t=1

1
2

(xti − xtj ). (270)

Similarly, we can get

γk+1
ij = β

k+1∑
t=1

1
2

(xtj − xti ). (271)

Note that we only define λij, γij , and zij for i < j. Now we
define

λij ≡ γji and zij ≡ zji, i > j. (272)



DADMM-S
Then (268), (270), and (271) hold for both i < j and i > j. In
this case, we can simplify (263) to

xk+1
i = argmin

xi

[
fi(xi) +

∑
j:(i,j)∈E

(
〈λkij − βzkij, xi〉+

β

2
‖xi‖2

)
+
∑

j:(i,j)∈E

(
〈γkji − βzkji, xi〉+

β

2
‖xi‖2

)]
= argmin

xi

[
fi(xi) +

∑
j∈Ni

(
〈λkij − βzkij, xi〉+

β

2
‖xi‖2

)]
= argmin

xi

[
fi(xi) +

∑
j∈Ni

(
〈λkij − βzkij + βxki , xi〉+

β

2
‖xi − xki ‖2

)]
= argmin

xi

[
fi(xi) +

∑
j∈Ni

(
〈λkij +

β

2
(xki − xkj ), xi〉+

β

2
‖xi − xki ‖2

)]
.

(273)



DADMM-S

We denote the Laplacian matrix of the network as L ∈ Rm×m

and D as the diagonal degree matrix with Dii = di. We have

0 ≤ αTLα =
1
2

∑
(i,j)∈E

(αi − αj)
2 ≤

∑
(i,j)∈E

(α2
i + α2

j ) = 2αTDα,

i.e., 0 � L � 2D. Define

X =

xT1
...
xTm

 ∈ Rm×d, f (X) =
∑
i

fi(xi), (274)

vi =
∑
j∈Ni

λij, and Υ =

vT1
...
vTm

 ∈ Rm×d. (275)



DADMM-S
Then we have

LTi X = dixTi −
∑
j∈Ni

xTj , ∀i ∈ [m], (276)

where Li is the i-th column of L. The result can be obtained
easily because di is the coe�icient of the diagonal element and
−1 is the coe�icient of xij, i 6= j, if there is an edge between i
and j. Based on this, (273) can be simplified as

xk+1
i = argmin

xi

[
fi(xi) + 〈vki , xi〉+

β

2

〈∑
j∈Ni

Lijxkj , xi
〉

+
βdi
2
‖xi − xki ‖2

]
= prox(βdi)−1fi

(
xki −

1
βdi

(
vki +

β

2

∑
j∈Ni

Lijxkj
))
. (277)



DADMM-S
Summing (269) over j ∈ Ni, we have

vk+1
i = vki +

β

2

∑
j∈Ni

Lijxk+1
j , i ∈ [m]. (278)

Then based on (277) and (278), we have the following
algorithm, named DADMM-S (DADMM, Simplified) —— For
each node i:
1. Initialize x0i and v0i as 0
2. Send x0i to its neighbors
3. Wait until receiving x0j from all its neighbors
4. for k = 0, 1, 2, ... do

4.1 Update xk+1
i by (277)

4.2 Send xk+1
i to its neighbors

4.3 Wait until receiving xk+1
j from all its neighbors

4.4 Update vk+1
i by (278)

DADMM-S is much simpler than DADMM by greatly
reducing the communication overheads.



DADMM-S
Now let’s discuss one more interesting thing. (277) and (278)
can be wri�en in a compact form:

X k+1 = argmin
X

(
f (X) + 〈Υk +

β

2
LX k,X〉+

β

2
‖
√
D(X − X k)‖2

)
,

(279)

Υk+1 = Υk +
β

2
LX k+1. (280)

Denoting W =
√
L/2, (280) can be rewri�en as

Υk+1 = Υk + βW 2X k+1. (281)

Le�ing Υ0 ∈ span(W 2), we know that

Υk ∈ span(W 2),∀k ≥ 0 (282)

and there exists Ωk such that Υk = WΩk.



DADMM-S

Then, (279) and (280) can be rewri�en as

X k+1 = argmin
X

(
f (X) + 〈Ωk,WX〉+ β〈W 2X k,X〉

+
β

2
‖
√
D(X − X k)‖2

)
= argmin

X

(
f (X) + 〈Ωk,WX〉+

β

2
‖WX‖2 + DΨ (X ,X k)

)
,

(283)

Ωk+1 = Ωk + βWX k+1, (284)

with

Ψ(X) =
β

2
‖
√
DX‖2 − β

2
‖WX‖2. (285)



DADMM-S

Thus, DADMM-S is exactly using LADMM to solve

min
X

f (X), s.t. WX = 0. (286)

i
Under the assumption that each fi is µ-storngly convex and
Lf -smooth DADMM-S is able to achieve a linear convergence

rate, more specifically, O((
√

Lf dmax

µσL
+ dmax

σL
) log 1

ε
), where

dmax = max{di}, and σL is the smallest positive eigenvalue of
the Laplacian matrix L.



DLADMM

In the following, we also assume that each fi is µ-storngly
convex and Lf -smooth. (263) (or (277)) is actually a proximal
mapping of fi. As what we have done in Sec. II, when the
proximal mapping of fi is not easily computable, we can
linearize fi, which leads to the following iteration:

xk+1
i = argmin

xi

[
〈∇fi(xki ), xi − xki 〉+

Lf
2
‖xi − xki ‖2︸ ︷︷ ︸

approximated linearization of fi

+
∑

j:(i,j)∈E

(
〈λkij, xi − zkij〉+

β

2
‖xi − zkij‖2

)
+
∑

j:(j,i)∈E

(
〈γkji , xi − zkji〉+

β

2
‖xi − zkji‖2

)]
. (287)



DLADMM

Similarly, (287) can be transformed into

xk+1
i = argmin

xi

[
〈∇fi(xki ), xi − xki 〉+

Lf
2
‖xi − xki ‖2

+
∑
j∈Ni

(
〈λkij +

β

2
(xki − xkj ), xi〉+

β

2
‖xi − xki ‖2

)]
= xki −

1
Lf + βdi

{
∇fi(xki ) +

∑
j∈Ni

[
λkij +

β

2
(xki − xkj )

]}
.

(288)



DLADMM

We can also write (288) into a compact form:

X k+1 = X k − (Lf I + βD)−1
(
βW 2X k +∇f (X k) + WΩk),

where I is the identity matrix. We call (288) and (278)
DLADMM (Decentralized Linearized ADMM).

Similar to DADMM-S, DLADMM is also a speicial case of
LADMM, but with a di�erent Bregman distance:

Ψ(X) =
L
2
‖X‖2 − f (X)︸ ︷︷ ︸
the added term

+
β

2
‖
√
DX‖2 − β

2
‖WX‖2. (289)



DLADMM

The procedure of DLADMM is —— For each node i:
1. Initialize x0i and v0i as 0
2. Send x0i to its neighbors

3. Wait until receiving x0j from all its neighbors

4. for k = 0, 1, 2, ... do
4.1 Update xk+1

i by (288)
4.2 Send xk+1

i to its neighbors
4.3 Wait until receiving xk+1

j from all its neighbors
4.4 Update vk+1

i by (278)

The only di�erence lies in step 4.1.

Under the same assumption to DADMM-S, DLADMM is also
able to achieve a linear convergence rate, but faster.
Specifically, the rate is O((

Lf
µ

+ dmax
σL

) log 1
ε
).



Acc-DLADMM

Without any doubt, We can also use Accelerated LADMMs to
solve P ′′10. In this case we have

Y k = θX k + (1− θ)X̃ k, (290)

X k+1 =
1

θ
α

+ µ

[
µY k +

θ

α
X k − (∇f (Y k) + WΩk + βθW 2X k)

]
,

(291)

X̃ k+1 = θX k+1 + (1− θ)X̃ k, (292)

Ωk+1 = Ωk + βθX k+1. (293)

(291) is a direct extension from (109). We name it
Acc-DLADMM.



Acc-DLADMM

The detailed procedure of Acc-DLADMM is —— For each node
i:
1. Initialize x0i = x̃0i and v0i = 0
2. Send x0i to its neighbors

3. Wait until receiving x0j from all its neighbors

4. for k = 0, 1, 2, ... do
4.1 Update yki by (290)
4.2 Update xk+1

i by (291)
4.3 Update x̃k+1

i by (292)
4.4 Send xk+1

i to its neighbors
4.5 Wait until receiving xk+1

j from all its neighbors
4.6 Update vk+1

i by (293)

Note that the formulas mentioned above are used in their
non-compact forms.



Comparisons

Under the same assumption to DADMM-S and DLADMM,
Acc-DLADMM is able to achieve a faster rate ——
O(
√

Lf dmax

µσL
log 1

ε
).

For solving P ′′10, the complexity of di�erent algorithms are
compared below:

Method Rate

DADMM-S O((
√

Lf dmax

µσL
+ dmax

σL
) log 1

ε
)

DLADMM O((
Lf
µ

+ dmax
σL

) log 1
ε
)

Acc-DLADMM O(
√

Lf dmax

µσL
log 1

ε
)



Asynchronous Distributed Optimization

All the CADMMs and DADMMs introduced above are
executed in a synchronous manner. That is, the master needs
to wait for all the workers (each worker needs to wait for all
its neighbors) to finish their updates before it can proceed.
Thus, the system proceeds at the pace of the slowest node.

In the following, we introduce the asynchronous ADMMs to
reduce the waiting time for centralized optimization problems.
They can be easily extended to decentralized problems.



Asynchronous Centralized Distributed Optimization

In the asynchronous se�ing, the master does not wait for all
the workers, but proceeds as long as it receives information
from a partial set of workers instead. We denote the partial
set at iteration k as Ak, and Ak

c as the complementary set of
Ak, which means the set of workers whose information does
not arrive at iteration k.

We use α to lower bound the size of Ak. We require that the
master has to receive the updates from every worker at least
once in every τ iterations. That is, we do not allow some
workers to be absent for a long time. So we make the
following bounded delay assumption.

Assumption VI-1
The maximum tolerable delay for all i and k is upper bounded.



Async-CADMM

Denote the upper bound as τ , then it must be that for every
worker i,

i ∈ Ak ∪ Ak−1 ∪ · · · ∪ Amax{k−τ+1,0}. (294)

Similar to CADMM, we have the following iterations:

xk+1
i =


argminxi

(
fi(xi) + 〈λk̄i+1

i , xi〉 i

+β
2 ‖xi − zk̄i+1‖2

)
i ∈ Ak

xki i ∈ Ak
c ,

(295)

λk+1
i =

{
λk̄i+1
i + β(xk+1

i − zk̄i+1) i ∈ Ak

λki i ∈ Ak
c .

(296)



Async-CADMM

We have the following iterations (cont’d):

zk+1 = argmin
z

[ m∑
i=1

(
〈λk+1

i , xk+1
i − z〉+

β

2
‖xk+1

i − z‖2
)

+
ρ

2
‖z − zk‖2

]
. (297)

Note that z is updated with adding an additional proximal
term. In the above iterations, we denote k̄i as the last iteration
before iteration k for which worker i ∈ Ak arrives, i.e., i ∈ Ak̄i .
Thus, for all workers i ∈ Ak, we have

x k̄i+1
i = x k̄i+2

i = · · · = xki , (298)

λk̄i+1
i = λk̄i+2

i = · · · = λki , and (299)

max{k − τ, 0} ≤ k̄i < k. (300)



Async-CADMM

For each i ∈ Ak
c , we denote k̃i as the last iteration before

iteration k for which worker i arrives, i.e., i ∈ Ak̃i . Under the
bounded delay assumption, we have

max{k − τ + 1, 0} ≤ k̃i < k. (301)

Similarly, for all workers i ∈ Ak
c , we have

x k̃i+1
i = x k̃i+2

i = · · · = xki = xk+1
i , (302)

λk̃i+1
i = λk̃i+2

i = · · · = λki = λk+1
i . (303)



Async-CADMM

We also denote k̂i as the last iteration before k̃i for which
i ∈ Ak̃i arrives, i.e., i ∈ Ak̂i . We also have

x k̂i+1
i = x k̂i+2

i = · · · = x k̃ii , (304)

λk̂i+1
i = λk̂i+2

i = · · · = λk̃ii , and (305)

max{k̃i − τ, 0} ≤ k̂i < k̃i. (306)

Then, for all workers i ∈ Ak
c , we have

xk+1
i = x k̃i+1

i = argmin
xi

(
fi(xi) + 〈λk̂i+1

i , xi〉+
β

2
‖xi − zk̂i+1‖2

)
,

(307)

λk+1
i = λ̃k̃i+1

i = λk̂i+1
i + β(x k̃i+1

i − zk̂i+1). (308)



Async-CADMM

Based on (295), (296), and (297), for the master we have:
1. Initialize the delay counter d̃11 = d̃12 = ... = d̃1m = 0
2. for k = 1, 2, ... do

2.1 Wait until receiving x̂ki and λ̂ki from workers i ∈ Ak such that
|Ak| > α and d̃kj < τ − 1 holds for all j ∈ Ak

c

2.2 Update the local copy of x: xk+1
i =

{
x̂ki i ∈ Ak

xki i ∈ Ak
c

2.3 Update the local copy of λ: λk+1
i =

{
λ̂ki i ∈ Ak

λki i ∈ Ak
c

2.4 Update the delay counter: dk+1
i =

{
0 i ∈ Ak

d̃ki + 1 i ∈ Ak
c

2.5 Update zk+1 by (297)
2.6 Broadcast zk+1 to the workers i ∈ Ak



Async-CADMM

For each worker i:
1. Initialize x̂0i and λ̂0i
2. for ki = 1, 2, ... do

2.1 Wait until receiving z from the master
2.2 Update x̂ki+1

i by (295), i.e.,

x̂ki+1
i = prox{z − 1

β
λ̂kii }

2.3 Update λ̂ki+1
i by (296), i.e.,

λ̂ki+1
i = λ̂kii + β(x̂ki+1

i − z)

2.4 Send x̂ki+1
i and λ̂ki+1

i to the master



Async-CADMM

We name it Async-CADMM ——
I The master only updates xi and λi for i ∈ Ak;
I The delay counter is introduced, and the master has to

wait in some cases;
I The master only broadcast zk+1 to the arrived workers

When each fi is convex and L-smooth, Async-CADMM is able
to converge to the set of KKT points. Specifically, when each fi
is strongly convex, Async-CADMM can achieve linear

convergence rate O(
√

L
µ

log 1
ε
).

We believe that in general the asynchronous ADMM needs
more iterations than synchronous ADMM. It is unclear
whether the time saved per iteration of the asynchronous
ADMM can o�set the cost of more iterations in theory,
although it shows great advantages in practice.



Async-CADMM

What if each fi in P ′10 can be nonconvex? In this case,
Async-CADMM can still converge to the set of KKT points.
Besides, The synchronous ADMM is a special case of the
asynchronous ADMM with Ak

c = ∅ and k̄i + 1 = k. Thus, the
conclusion also holds for the synchronous ADMM with a
much simpler proof.

We leave the asynchronous ADMM for decentralized
distributed problems untouched in this slide.



Generally Linear Distributed Optimization
Now we consider generally linear distributed optimization
problems. The problem has the form of P3, i.e.,

min
{xi}i∈[m]

m∑
i=1

fi(xi), s.t.
m∑
i=1

Aixi = b.

Here we just study the problem in a synchronous and
centralized manner. The problem in asynchronous and
decentralized scenarios can be extended easily. We can use
LADMM-PS introduced in Sec. II to solve it.

Specifically, for the master we have:
1. for k = 0, 1, 2, ... do

1.1 Wait until receiving yk+1
i from all the workers

1.2 Update sk+1 by: sk+1 =
∑

i y
k+1
i

1.3 Update λk+1 by: λk+1 = λk + β(sk+1 − b)
1.4 Send sk+1 and λk+1 to all the workers

i



CLADMM-PS
For each worker i:
1. Initialize x0i and λ0i
2. y0i = Aix0i
3. Send y0i to the master
4. Wait until receiving s0 and λ0 from the master
5. for k = 0, 1, 2, ... do

5.1 Update xk+1
i by

xk+1
i = argmin

xi

(
fi(xi) + 〈λk,Aixi〉

+ β〈AT
i (s

k − b), xi〉+
mβ‖Ai‖2

2
‖xi − xki ‖2

)
(309)

5.2 Update yk+1
i by yk+1

i = Aixk+1
i

5.3 Send yk+1
i to the master

5.4 Wait until receiving xk+1 and λk+1 from the master

We name it CLADMM-PS. The way it updates xk+1
i is the same

to (141).
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